HOW EFFECTIVE ARE FISCAL INCENTIVES FOR R&D?
A REVIEW OF THE EVIDENCE

Bronwyn H. Hall
John van Reenen

Working Paper 7098
http://www.nber.org/papers/w7098

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
April 1999

This paper draws on previous work by the authors (especially Hall 1995 and Bloom et al 1998) and their colleagues. Special thanks to Lucy Chennells, Nick Bloom and Rachel Griffith. The second author thanks funding from the ESRC Centre for Microeconomic Analysis of Fiscal Policy at the Institute for Fiscal Studies. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

© 1999 by Bronwyn H. Hall and John van Reenen. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
How Effective are Fiscal Incentives for R&D?
A Review of the Evidence
Bronwyn H. Hall and John van Reenen
NBER Working Paper No. 7098
April 1999
JEL No. H32, 031, O38

ABSTRACT

This paper surveys the econometric evidence on the effectiveness of fiscal incentives for R&D. We describe the effects of tax systems in OECD countries on the user cost of R&D - the current position, changes over time and across different firms in different countries. We describe and criticize the methodologies used to evaluate the effect of the tax system on R&D behavior and the results from different studies. In the current (imperfect) state of knowledge we conclude that a dollar in tax credit for R&D stimulates a dollar of additional R&D.

Bronwyn H. Hall
Dept. of Economics
549 Evans Hall
UC Berkeley
Berkeley, CA 94720-3880
and NBER
bhhall@econ.berkeley.edu

John van Reenen
Institute for Fiscal Studies
7 Ridgmount St.
London WC1E 7AE
UK
jvanreenen@ifs.org.uk
1. Introduction

Economists generally agree that the market will fail to provide sufficient quantities of R&D as it has some characteristics of a public good. But how should policy bridge the gap between the private and social rate of return? A tax-based subsidy seems the market-oriented response as it leaves the choice of how to conduct and pursue R&D programs in the hands of the private sector. There are several drawbacks to this tool, however, compared with government financing and/or conducting the R&D program directly (see Klette, Moen and Griliches, 1998). Perhaps the primary objection is that fiscal incentives are simply ineffective in raising private R&D spending - the response elasticity is so low it would take a huge tax change to generate the socially desirable level of spending. This was the conventional wisdom among economists until recently, so it is the key focus of this paper. We address the issue of how governments (sometimes inadvertently) have used the tax system to promote R&D, how researchers have evaluated these effects, and what the results of their evaluations are.

There are other objections to the use of the tax system to which we will be paying less attention. First, the projects that should be promoted from a social view are those with the largest gaps between the social and private return. Yet private sector firms will use any credits to first fund R&D projects with the highest private rates of return. In principle the state could do a lot better by targeting the projects with the highest spillover gap. In practice this maybe very hard to deliver because of the intrinsic uncertainty of knowledge creation and because of
the tendency of states to reward lobbyists and bureaucrats rather than take the optimal decisions.\footnote{On this point, see Cohen and Noll (1991) for discussion of the issue and a series of examples drawn from the U. S. experience of the past thirty years. They demonstrate that large federal R&D projects have frequently been continued well past the point where expected costs exceeded expected benefits due to the existence of stakeholders that had legislative influence.} In the face of pervasive government failure to implement the optimal subsidy policy, tax credits appear more attractive.

Using the tax system to stimulate R&D is far from the ultimate panacea for failures in the market for knowledge. Implementation in the existing political and tax environment has meant that there are frequent changes in the fiscal incentives faced by firms that affect the costs of performing R&D in different ways for different companies at different times. This heterogeneity is a burden for companies and policy makers but is a boon for social scientists. A long standing problem in the investment literature is the intractability of finding exogenous variation in the user cost of capital. The heterogeneity across firms and time in the cost of capital for this type of investment has the potential to help identify parameters of the underlying R&D investment demand equation. The frequent changes of government policy offer a rare opportunity to generate some exogenous movement in the price of R&D (even across firms) that could be used to identify a key part of the neoclassical model. What’s bad for the economy may be good for the econometricians!

The paper is structured as follows. In section 2 we examine the tax treatment of R&D in an international context and introduce the major issues. In section 3 we critically outline the methodologies researchers have used to examine the effects of tax incentives on R&D. In section 4 we present the survey of results and in section 5 we offer some concluding comments.
2. The tax treatment of R&D across countries

2.1. The current position

The treatment of R&D by the tax system varies extensively between countries and over time. Table 1, which is drawn from many sources, summarizes the position in approximately 1995 to the best of our knowledge.\(^2\) The second column of the table attempts to give the definition of R&D that is used for the purpose of the tax credit, which is often somewhat more restrictive than the Frascati manual (OECD 1980) definition, but not always. The next two columns give the rates at which non-capital R&D and capital R&D are depreciated for tax purposes. 100 percent means that the quantity is expensed. In most cases it is also possible to elect to amortize R&D expenditure over 5 years. This might conceivably be an attractive option if operating loss carryforwards are not available (to use the R&D expense as a deduction even if no current tax is owed), but in most cases tax losses can be carried forward and back (see column 7).

[Table 1 about here]

Given that R&D capital expenditure is typically only 10-13% of business R&D, and that the business R&D-GDP ratio is typically 1-2% (OECD 1994), implying an R&D capital equipment-GDP ratio of 0.1-0.2%, a remarkable amount of time has been spent in many of these countries tinkering with the expensing and depreciation rules for capital equipment used in R&D activities.\(^3\) Although almost all

\(^3\)In addition to the features of the tax system targeted toward R&D equipment expenditures at the federal level in many countries, in many U.S. states there is a special sales tax provision
countries (except for the UK) treat this kind of capital expenditure somewhat like ordinary investment, many have used complex speeded-up depreciation schemes at one time or another to give a boost to a R&D capital equipment investment; this can be often be justified by the simple fact that the economic life of this kind of specialized equipment is likely to be shorter than that for other types of capital. Frequently the depreciation involved is also subject to the R&D tax credit. Normally buildings or plant for use by an R&D laboratory do not participate in these schemes.

Columns 5 and 6 characterize the tax credit, if there is one. The rate and the base above which the rate applies are shown; when the base is zero, the credit is not incremental, but applies to all qualifying R&D expense. At the present time, it appears that only France, Japan, Korea, Spain, the United States, and Taiwan have a true incremental R&D tax credit, and they each use a slightly different formula for the base. Canada has a non-incremental credit and Brazil has a non-incremental credit that is restricted to computer industry research. Column 8 shows that many countries also have provisions that specially favor R&D in small and medium-sized companies. In France, for example, this takes the form of a ceiling on the credit allowed that is equal to 40 million francs in 1991-1993 (approximately $6.7M). The effect is to tilt the credit toward smaller firms, whereas direct R&D subsidies in France go to large firms to a great extent (Seyvet 1995). An exception to this rule is Australia, which has a minimum size of research program to which the tax preference of 150% expensing applies: $20,000. This seems to be related more to the administrative cost of handling the R&D tax which exempts firms from paying sales tax on purchases or repairs of this kind of equipment. This amounts to an additional tax credit of about 4-8 percent in the states that have this provision.
concession than to any policy decision (Bell 1995, Australian Bureau of Industry Economics 1993).

The next two columns give any differences in tax treatment that apply to R&D done abroad by domestic firms or R&D done in the country by foreign-owned firms. For the first type of R&D, any special incentives (beyond 100% deductibility) will typically not apply, except that up to 10% of the project cost for Australian-owned firms can be incurred outside Australia. For the second type of R&D, it is frequently difficult to tell from the summarized tax regulations. In Korea and Australia, foreign firms do not participate in any of the incentive programs. In the United States and Canada, they are treated like domestic firms, except that they do not receive an R&D grant in Canada when their tax liability is negative.

The final column tells whether the incremental tax credit is treated as taxable income, that is, whether the expensing deduction for R&D is reduced by the amount of the tax credit. Whether or not this is true typically has a major effect on the marginal incentive faced by a tax-paying firm, but it is somewhat hard to ascertain in many cases whether this feature applies.

2.2. Changes over time

Reforms of systems of taxing corporate income over the past decade have tended towards lowering statutory rates and broadening the tax base. What has happened to the tax treatment of R&D over that time period? This section documents some of the main changes in the tax treatment of R&D in eight countries over the period 1979 to 1994 (see Bloom et al (1998) for more details). It is worth noting that the cost of R&D figures reported in this section are calculated assuming that the R&D
investment qualifies for any credit, that the amount of credit is not constrained by any capping rules and that the firm has sufficient tax liability against which to offset the credit. In the next section we investigate how the various credits affect firms in different positions.

The following assumptions are made concerning the type of R&D investment to be analysed. We consider a domestic investment, financed from retained earnings, in the manufacturing sector and divided into three types of asset for use in R&D - current expenditure, buildings, and plant and machinery. An important assumption in the modelling strategy used here is that current expenditure on R&D is treated as an investment - that is, its full value is not realised immediately but accrues over several years. Current expenditure on R&D is assumed to depreciate at 30% a year, buildings at 3.61% and plant and machinery at 12.64%.

[Figure 1 here]

Figure 1 shows how the tax treatment of R&D has changed over time. This graph shows the tax component of the user cost of R&D for a typical R&D\(^4\) investment in Australia, Canada, France and the USA. These are the four countries that had the most generous treatment of R&D. The tax component user cost measures the generosity of the tax system in subsidising R&D (see appendix). In general, the full user cost depends on differential inflation and interest rates, but we have set the real interest rate to be 10 per cent across all countries and years to highlight the tax element of the user cost. The user cost is weighted across assets (90% current expenditure, 3.6% buildings, and 6.4% plant and machinery).

\(^4\)Typical’ means a domestic investment financed from retained earnings for a firm which is not tax exhausted or hitting any maximum tax credit caps.
A value of unity signals that the tax system is broadly neutral with respect to R&D. This can occur if all R&D was fully written off and there were no special tax credits.

Taking any year in isolation, it is clear that large differences exist among countries, a feature highlighted in previous studies. It appears that Canada has the most generous treatment of R&D, except during three years in the mid 1980s when Australia gave a larger subsidy. Furthermore, in all of these countries the tax treatment of R&D has become more generous since the early 1980s, although there has been considerable turbulence. The relative position of countries has moved around and there are substantial changes in the tax wedge on R&D due to changes in tax policies. The mid to late 1980s was a period of particular change. This turbulence illustrates the difficulty for firms considering long term investment plans, that there may be considerable uncertainty about the permanence of fiscal incentives.

The reasons for the periods of large change in the cost of R&D vary across countries. In Australia, the large drop in 1985 was due to the introduction of a 150% ‘superdeductibility’ for R&D. The subsequent increase was due to the lowering of Australia’s statutory rate of corporation tax. The generosity of the Canadian system is driven by the fact that the credit rate is relatively high on the incremental amount of R&D. The fall in the cost of R&D in 1988 was precipitated by the introduction of a second credit in Ontario (the province which we model here). In France, the introduction of the credit in 1983 had much less effect than the redefinition of the base (from a moving base to a fixed base and then back again) which occurred between 1987-1990. Similarly in the USA, the base re-definition in 1990 had a greater effect than the introduction of the credit in
1981. These points illustrate that the statutory credit rate is not of over-riding importance to the cost of R&D. The design and implementation of the schemes (such as the definition of the base) and the effects of other parts of the tax system (such as the statutory tax rate) are at least of equal importance in explaining the trends over time.

[Figure 2 here]

Figure 2 shows the tax wedge in the four less generous countries. In these countries the tax systems are broadly neutral to R&D (i.e., the tax wedge is close to zero). There have not been many changes in the tax treatment of R&D in these countries over this period. Japan occupies an intermediate position, however, as the only country in this group which has an R&D tax credit although the UK does also give an allowance for R&D capital expenditure.

Another striking feature of Figures 1 and 2 taken together is that the range of the user costs at the end of the period is greater than at the start. In 1979 the mean effective marginal tax wedge on the typical R&D investment was 0.953 with a standard deviation of 0.098. By 1994 the mean had fallen to 0.857 and the standard deviation increased to 0.163

2.3. Heterogeneity of the Effects of the Tax System

One of the striking findings of the flourishing of micro-economic studies in the last two decades is the huge heterogeneity between different firms. The way in which the R&D tax credit creates heterogeneous and often perverse incentives has been a key feature of the debate on the (un)desirability of R&D tax credits. The heterogeneity emerges in many ways. First, unless there is a full refund then
many firms will not be able to use the full value of the tax credit because they do not have sufficient taxable profits (e.g. young firms or firms in recession). Carryforwards and carrybacks will compensate for this to an extent depending on interest rates and expectations of future taxable profits. Second, there are usually caps limiting the maximum credit available. Third, the definition of the base will affect firms in different ways. A moving base will mean that firms who are intending to increase their R&D may be put off because their current increases increase the size of the base which will limit their future tax rebates (Eisner et al, 1982).

To illustrate the importance of heterogeneity, Figure 3 shows the distribution of the user cost of R&D in the US over time. There is considerable heterogeneity for most of the period. The reduction in the 1990s is due to moving from a moving base to a fixed base in 1989. A similar graph for Canada is given in Figure 4. This variation between firms is almost certainly an additional source of uncertainty facing firms. It offers a potential source of identification in firm panel studies of R&D.

[Figures 3 and 4 here]

3. Effectiveness of the R&D Tax Credit

There are two approaches to evaluating the effectiveness of any tax policy designed to correct the insufficient supply of a quasi-public good. The first asks whether the level of the good supplied after the implementation of the policy is such that the social return is equal to the social cost. In this situation, that would involve comparing the marginal return to industrial R&D dollars at the societal level to
the opportunity cost of using the extra tax dollars in another way, for example, in deficit reduction. This is a very tall order, and policy evaluation of the tax credit usually falls back on the second method, which is to compare the amount of incremental industrial R&D to the loss in tax revenue. The implicit assumption in this method is that the size of the subsidy has been determined and that the only question to be answered is whether it is best administered as a tax credit or a direct subsidy. Obviously, this kind of benefit-cost ratio is only very loosely connected with the magnitude of the gap between the social and private returns to R&D, if at all. It might be that the social return from additional industrial research is very high. If it is very high one may be willing to give up more tax dollars than the actual research induced by the tax subsidy. On the contrary, if the social return is only slightly higher than the private return, lowering the cost of research might cause the firm to do too much.\footnote{Some government policies towards R&D are explicitly aimed at reducing duplicative R&D - for example, in the U. S., government sponsored consortia such as SEMATECH, as well as the antitrust exemption contained in the National Cooperative Research Act of 1982.} In this case, even though the tax credit induces more industrial R&D than the lost tax revenue, it would not be a good idea, because one could have spent that tax revenue on some other activity which had a higher social return. Fortunately, the available evidence on the social return to R&D suggests that the first case is more likely than the second.

Most evaluations of the effectiveness of the R&D tax credit have been conducted using the second method, that is, as benefit-cost analyses. We need to calculate both the amount of R&D induced by the tax credit, and computing the costs requires estimating how much tax revenue is lost due to the presence of the credit. The ratio of these two quantities is the benefit-cost ratio; if it is greater than one, the tax credit is a more cost-effective way to achieve the given level of
R&D subsidy; if it is less than one, it would be cheaper to simply fund the R&D directly. This part of the paper critically reviews the methodology underlying these evaluations and surveys the resulting evidence, including the small number of studies that have been conducted using data from outside the United States.

3.1. Costs of R&D tax support

The first ingredient in doing a benefit-cost analysis of the tax credit is the computation of total cost. The total social cost consists of the net tax revenue loss due to the credit plus the costs of administering it, both to the firm and to the taxing authority. In practice, the cost computed has been simply the gross tax credit claimed. At best this has been done by simply adding up the credits claimed by the firms that use the credit (Mansfield 1986, Hall 1993), sometimes adding in the unused credits that have been used to offset prior-year liabilities (GAO 1989). Occasionally estimates have been produced relying only on representative or average firm behavior; this method is likely to produce erroneous results given the extreme heterogeneity in the data. Either way, this type of analysis ignores the fact that the existence and use of the R&D tax credit may have implications for the overall tax position of the firm, so that the net change in tax revenue because of the credit is not captured by simply adding up the credits. It is likely that these other effects are relatively small, but by no means certain.

The second omission in the conventional computation is the administrative cost of the tax credit. The GAO Study of 1989, updated in 1995, makes it clear that these costs can be high, but offers no estimate of their magnitude. Difficulties arise in two areas: the definition of eligible R&D, which typically requires a distinction between routine and innovative research, and may be more restrictive than the
definition used by the firm’s accountants, and the performance of research by outside subcontractors. For example, the U. S. Internal Revenue Service appears to have taken the position that the tax credit should flow to the organization that will pay for the R&D "in the normal course of events," rather than to the organization that bears the risk of the investment. Stoffregen (1995) argues that these ambiguities in interpretation of the law also impose costs on the firms, in that they will be unsure whether the R&D they are undertaking will fall within the area delimited by the tax regulations as legitimate qualified expenditures. The GAO reports that almost 80% of returns claiming R&D credits are audited in the U. S. with an average net adjustment downward of about 20% of the credits claimed.

3.2. The benefits of R&D support: Evaluation methods

Can the R&D tax credit stimulate as much research per dollar as funding the R&D directly? Conceptually, measuring the amount of R&D induced by a tax credit is a ceteris paribus exercise, in which we attempt to ask the question: “How much more R&D did firms do given the existence of a tax credit than they would have done if there had been no credit?” The counterfactual is never observed, and researchers fall back on a variety of methods to try to estimate the level of R&D without the subsidy. We consider three evaluation methods.

3.2.1. Event and Case Studies

Event studies typically rely on the assumption that the event being studied (such as the introduction of a tax credit) is a surprise to the economic agents it affects. They are usually conducted using financial market data, although this is not
necessary. The method involves comparing behavior before a surprise change in policy is announced with behavior after the announcement in order to deduce the effect of the policy change. In this instance, such a comparison can take the form of comparing the market value of R&D-oriented firms before and after the tax credit legislation was considered and passed, or of comparing R&D investment plans for the same time period before and after the legislation (An example of the former method is Berger 1993 and of the latter is Eisner, as reported in Collins 1983). A problem with many of these studies is that other events are not conditioned out (such as demand growth accompanying the policy change).

A case study is essentially a retrospective event study. You simply ask the senior managers of industrial firms how their R&D spending has been affected by the introduction of an R&D tax credit (for example, Mansfield 1986). These are often combined with an econometric analysis (e.g. Mansfield and Switzer, 1985 who looked at 55 Canadian firms). These have the advantage that (in principle) the manager controls for other factors when she answers the question. The main problem is that managers may not give the right answer to the question, for subjective or perceptual reasons. Furthermore, event and case studies tend to be focused on rather small samples of firms, due to the cost of collecting the data to perform them.

6 There is a general tendency in surveys for managers to focus on their firm’s (or their own individual) idiosyncratic brilliance rather than general features of the economic environment as the source of positive change.
3.2.2. Natural Experiments: R&D demand equation with a shift parameter for the credit.

Here one constructs as well as possible an equation that predicts the level of R&D investment \(r_{it} \) as a function of past R&D, past output, expected demand, perhaps cash flow and price variables, and so forth (different studies have different conditioning variables - call these \(x_{it} \)). A dummy variable is included \((C_{it}) \), equal to one when the credit is available and zero otherwise. For example:

\[
 r_{it} = \alpha_0 + \beta C_{it} + \gamma' x_{it} + u_{it}
\]

(3.1)

The magnitude of the estimated coefficient of the dummy \((\beta) \) is equal to the amount of R&D induced by the presence of the credit. If this exercise is conducted using firm-level data \((i = \text{firm}) \), the best method is to measure the availability of the credit at the firm level, that is, taking account of the usability of the credit. If it is conducted at the macro-economic or industry level, the identification of the credit effect will generally come from the variation in R&D demand over time \((C_{it} = C_t) \). (Examples: Eisner, Albert, and Sullivan 1993; Swenson 1992; Berger 1993; Baily and Lawrence 1992; McCutchen 1993). The advantage of this method is its relative simplicity; it eliminates the need to perform the relatively complex computations to determine the actual level of the tax credit subsidy for each firm. The disadvantage is that the measurement is relatively imprecise, because there is no guarantee that all firms are facing the same magnitude of credit at any given point in time. In fact, we have seen how great the variation in the user cost has been after the credit was introduced in Figures 3 (for the U. S.) and 4 (for Canada). In addition, if the variation in the credit dummy is over time, it is
very possible that other forces which increase aggregate industrial R&D spending (such as global economic conditions, trade, etc.) and that are not included in the R&D equation may lead to a spurious conclusion about the effectiveness of the tax credit. In other words the credit dummy is not separately identified from a set of time dummies.

3.2.3. Quasi-Experiments: Price Elasticity Estimation.

This method is similar to the previous method, in that an R&D equation that controls for the non-tax determinants of R&D is estimated, but in this case a price variable - the user cost of R&D - that captures the marginal cost of R&D is included in the equation (ρ). As with equation (3.1) lags may be introduced into the explanatory variables. The estimated response of R&D to this price variable is converted to an elasticity of R&D with respect to price. If the price variable includes the implicit subsidy given by the tax system to R&D, this is a direct measure of the response of R&D to its tax treatment (Examples: Hall 1993, Dagenais et al, 1998).

\[
\begin{align*}
 r_{it} &= \alpha_0 + \beta \rho_{it} + \gamma' x_{it} + u_{it} \\

\end{align*}
\]

(3.2)

Even if the price variable does not contain a measure of the tax subsidy, it is possibly to use the measured elasticity of R&D with respect to price to infer the response induced by a tax reduction of a given size. This involves the step of estimating the effect of a given policy change (such as an increase in the credit rate on the user cost of R&D) which is a mechanical exercise given one’s definition of the price. The second step is using the estimates of the model to predict what will happen to R&D following a change in the price. In the most simple case, holding
all else constant, if we estimate a price elasticity of -0.5 and the effective marginal R&D tax credit is .05, or a 5 percent reduction in cost, then the estimated increase in R&D from the tax credit will be 2.5 percent (Examples: Collins 1983; GAO 1989; Mansfield 1986). Of course this is too partial, a reduction in costs will also affect the firm’s output and if output is in the equation, the full effects are likely to be larger as output will rise as costs fall. There will also be possible spillover effects, and so on. However, researchers have tended to focus on the output-constant price effects (see below for more ‘structural’ approaches).

The advantage of this method is that it is better grounded in economic theory and estimates the price response of R&D directly. Thus it will be somewhat more accurate than the previous method. Using the tax price elasticity of R&D (the first variant) has a couple of disadvantages: First, because the firm benefits directly from the amount of R&D qualified to receive the tax credit, it is possible that it will relabel some expenses as R&D (legitimately or illegitimately) and the “true” induced R&D will therefore be an overestimate. Secondly, and perhaps most seriously, because the tax credit depends on a variety of firm characteristics, such as its operating loss position, how much foreign income it repatriates, and so forth, the R&D investment level and the tax price faced by the firm are simultaneously chosen, and ordinary regression methodology is inappropriate in this situation. For this reason, some researchers have relied on instrumental variables to estimate the price elasticity, with both the attendant loss of precision in estimation and problems with finding appropriate instruments to identify the endogenous variable.\footnote{See Hall (1993) and Hines (1993) for examples. Possible instruments are the lags of the user cost variables and the industry level deflators, as well as lagged values of firm characteristics in the case of micro data.}
The second variant of the quasi-experimental approach suffers from deeper disadvantages. Absent variations in tax treatment across firms and time, one is forced to use a constructed R&O price deflator as the price variable in an R&D demand equation. These deflators typically are a weighted average of R&D inputs, of which around half is the wages and salaries of technical personnel, and the other half is some kind of research materials and equipment index. The only real variation in this variable is over time. This is a very thin reed on which to rest the estimation of the price elasticity of R&D demand; the estimates will depend strongly on the other time-varying effects included in the model.

We finish this section with some general methodological problems. First, the theoretical justification of equation (3.2) is unclear. Some writers have argued for a much more ‘structural’ approach to the R&D equation. This is more easily said than done, however. Structural investment models for physical capital have had a poor record of success in empirical testing whether of q-models, Euler equations or Abel-Blanchard variety (see Bond and Van Reenen 1998, for a survey). Although various attempts have been made to estimate these more structural forms none have been conspicuously successful (e.g., Harhoff 1997; Hall 1992). A simple way of motivating the R&D investment equation is to treat it symmetrically to fixed investment. If the production function can be approximated as a CES (constant elasticity of substitution) then the first order condition under perfect competition would have the following form

\[g_{it} = \alpha_0 + \beta p_{it} + \gamma y_{it} + \nu_{it} \]

\[(3.3) \]

\(^8\)Hall (1993) is the only one of the studies in Tables 3 and 4 to use an Euler equation model for R&D investment demand, but even she is unwilling to trust the estimates and also reports the simple double log specification of the equation as well.
where \(g_{it} \) = the log(R&D stock), \(y_{it} \) = log(output) and \(\rho_{it} \) = log(user cost of R&D). Under this model \(\beta \) = the Hicks-Allen elasticity of substitution. Constant returns implies that \(\gamma = 1 \). The stock is generally calculated using the perpetual inventory method where \(G_t = R_t + (1 - \delta)G_{t-1} \), capital letters denoting the levels (not logs) of \(g \) and \(r \), and \(\delta \) is the knowledge depreciation rate. Unfortunately, unlike physical capital there is little information upon which to base the initial condition in constructing this measure.

Several studies specify the R&D equation in terms of a stock rather than a flow measure (e.g. Shah 1994; Bernstein 1988). It is important to be aware of this difference when examining the empirical studies as the stock will be much higher than the flow. However, when the equation is specified in logarithms (as it usually is) then the difference is not so clear. To see this assume that the R&D stock grows at rate \(\nu_i \), we have \(G_{it} = (1 + \nu_i)G_{i,t-1} \) so that

\[
R_{it} = (\delta + \nu_i)G_{i,t-1} = \frac{\delta + \nu_i}{1 + \nu_i} G_{it}
\]

and

\[
r_{it} = \ln \left(\frac{\delta + \nu_i}{1 + \nu_i} \right) + g_{it} = -\eta_i + g_{it}
\]

Substituting this equation into (3.3) gives

\[
r_{it} = \alpha_0 + \beta \rho_{it} + \gamma y_{it} + \eta_i + u_{it} \tag{3.4}
\]
This implies that we have to allow for firm fixed effects in the R&D equation, but that otherwise the estimates will be approximately the same, whether we use the log of the stock of R&D or its flow as the dependent variable.\(^9\) That is, as long as R&D is growing at approximately a constant rate at the firm level and we include fixed effects in the R&D equation, the interpretation of the coefficients is the same as it was in equation (3.3).

A deeper problem relates to the adjustment cost function of R&D. ‘Reduced form’ approaches will usually use a general dynamic form of (3.4) to capture these. The problem is that adjustment costs for R&D are likely to be large and this will be reflected in a large value for the lagged dependent variable. Temporary shocks to the price are unlikely to have very large effects and even permanent shocks will take a long time before their full effect is felt. This is compounded by the fact that R&D is characterised by large fixed and sunk costs so the linear form of (3.4) may be inappropriate. At the least one might consider modelling the decision to participate in R&D separately from the amount of R&D conditional on participation (e.g. Bond, Harhoff and Van Reenen 1999).

4. Econometric Evidence

Since the preponderance of work has been done on the U. S. we focus first on the results of this work before surveying the smaller number of international studies.

\(^9\)Of course, the fixed effects will also control for many other variables which have been omitted from the specifications such as firm specific knowledge depreciation rates, so they would probably also be useful in the version with the stock of R&D.
4.1. Studies on the United States

Table 2 presents a summary of the results of the many studies of the United States R&E tax credit that have been performed since its inception in 1981. In this table we report an attempt to ascertain two standardized results from these quite disparate studies: the price elasticity of R&D (for a typical firm in the sample) and some kind of estimate of the benefit-cost ratio of the credit. In many cases, the data that would allow us to compute these numbers were not really complete in the paper, and we were forced to give nothing, or a rough approximation to the quantity desired. It is apparent from looking at the table that the first wave of estimates (those using data through 1983) differ substantially from the second (those using data through 1988 and later) in two respects. First, the early studies tend to have lower or non-reported tax price elasticities of R&D; only the later study by McCutchen of large pharmaceutical firms is an exception, and the R&D equation in this study appears to be misspecified. Secondly, they are typically not based on the publicly reported 10-K data maintained by Compustat, but on internal U. S. Treasury tax data, surveys and interviews, and, in one case, an early Compustat file. This makes it difficult to ascertain whether the differences in results are because the response to the credit varied over time, or because the type of data used was substantially different.

Unfortunately, the only early study that used a large set of firms from Compustat (Eisner, Albert, and Sullivan 1983), contains an R&D equation that is not well-specified, and does not contain any variable to capture the effect of the tax credit. Thus it is not possible to draw any conclusion about the incentive effect from the regressions published in this report. In order to investigate results using
Compustat data in the earlier period, Hall (1995) re-estimated the equations in Table 6 of Hall 1993 for the time period 1981-82 using ordinary least squares. She found that the estimated tax price elasticity for this earlier period using Compustat data was slightly lower than that using Compustat data for the entire 1980s, but still very significant. In either levels or growth rates, it is approximately -0.6 instead of the -0.85 that was obtained for the whole period. If we multiply this elasticity times the weighted average effective credit rates for 1981 and 1982 shown in Table 3 of Hall 1993, we obtain projected increases in R&D spending during these two years of 2.1 and 2.3 percent respectively; consistent with the relatively low increases reported by Eisner and Mansfield using survey data that covered the same period.

As indicated above, later work using U. S. firm-level data all reaches the same conclusion: the tax price elasticity of total R&D spending during the 1980s is on the order of unity, maybe higher. This result was obtained by Berger (1993) using a balanced Compustat panel, Hall (1993) using an unbalanced Compustat panel, Hines (1993) using a balanced Compustat panel of multinationals and a tax price derived from the foreign income allocation rules for R&D rather than the credit, and by Baily and Lawrence (1987, 1992) using aggregate 2-digit level industry data. All of these researchers specified an R&D demand equation that contained lagged R&D, current and lagged output, and occasionally other variables such as cash flow. Hall and Hines used instrumental variable techniques to correct for simultaneity in the equation.\(^{10}\)

Thus there is little doubt about the story that the firm-level publicly-reported R&D data tell: the R&D tax credit produces roughly a dollar-for-dollar increase

\(^{10}\) Hall uses lags of the endogenous variables in a GMM estimator.
in reported R&D spending on the margin. However, it took some time in the early years of the credit for firms to adjust to its presence, so the elasticity was somewhat lower during that period. Coupled with the weak incentive effects of the early design of the credit, this low short run elasticity implied a weak response of R&D spending in the initial years, causing researchers to interpret it as zero or insignificant. Thus there is no actual contradiction in the evidence.

However, most of the solid evidence we have to date rests upon the response of total R&D spending to changes in the tax price of “qualified” R&E. This qualified R&E typically accounts for anywhere from 50% to 73% of total R&D spending. It also rests on rather shaky tax status data, where the effective tax credit rate faced by the firm is inferred using information in the Compustat files on operating losses and taxable income over the relevant years; where aggregate data is used, no attempt has been made to correct for the usability of the credit. There is reason to believe that inferring the qualified R&E spending by multiplying total R&D on the 10-K by a common correction factor (such as 0.6) and inferring the tax status by looking at the 10-K numbers is somewhat unreliable. The only study that has used the true (confidential) corporate tax data is that by Altshuler (1989) and unfortunately for our purposes here, it focuses on the weak incentive effect implied by the credit design rather than evaluating the actual R&D induced.

Basing our conclusions on the response of total R&D spending to a tax price inferred from Compustat data may suffer from two quite distinct problems that deserve further investigation: First, as discussed above, the estimates based on public data may be quite noisy, and even misleading. Second, because these estimates are based on the response of reported R&D to the credit itself, they may overestimate the true response of R&D spending to a change in price. This is
sometimes called the "relabelling" problem. If a preferential tax treatment for a particular activity is introduced, firms have an incentive to make sure that anything related to that activity is now classified correctly, whereas prior to the preferential treatment, they may have been indifferent between labelling the current expenses associated with R&D as ordinary expenses or R&D expenses. There is some suggestive evidence reported in Eisner, Albert, and Sullivan (1986) concerning the rate of increase in qualified R&E expenditures between 1980 and 1981, when the credit took effect. Using a fairly small sample of firms surveyed by McGraw-Hill, they were able to estimate that the qualified R&D share grew greatly between 1980 and 1981, less so between 1981 and 1982. This is consistent with firms learning about the tax credit, and shifting expenses around in their accounts to maximize the portion of R&D that is qualified. It is also consistent with the tax credit having the desired incentive effect of shifting spending toward qualified activities, although the speed of adjustment suggests that accounting rather than real changes are responsible for some of the increase.

One way around the relabelling problem is to use a method of estimating the inducement effect that does not rely directly on the responsiveness of R&D to the tax credit. This is the method used in U. S. GAO (1989) and in Bernstein's 1986 study of the Canadian R&D tax credit. One takes an estimated price elasticity for R&D, estimated using ordinary price variation and not tax price variation, and multiplies this elasticity times the effective marginal credit rate to get a predicted increase in R&D spending due to the credit rate. For example, if the estimated short run price elasticity is -0.13 (as in Bernstein 1986), and the marginal effective credit rate is 4 percent, the estimated short run increase in R&D spending from the credit would be 0.5 percent. With a long-run elasticity of -0.5 (Bernstein
and Nadiri 1989) and a marginal effective credit rate of 10 percent, the estimated increase would be 5 percent. In practice, the difficulty with this method has been that most of the elasticity estimates we have are based on a few studies by Bernstein and Nadiri that rely on the time series variation of an R&D price deflator that evolves as a fairly smooth trend and so is correlated with many other changes in the economy.11 In addition, they are based on either industry data from the 1950s and 1960s or a very small sample of manufacturing firms, so they may not generalize that easily.

It is unlikely that the R&D demand elasticity with respect to price is constant over very different time periods or countries, so it would be desirable to have more up-to-date estimates in order to use this method. Obviously, one can never be sure that firms will actually respond to a tax incentive in the way implied by the price elasticity and measured credit rate, but it would be useful to have this method available as a check on the more direct approach using tax prices.

4.2. Non-U. S. studies

Few countries have performed as many studies of their incremental R&D tax credit programs as the United States. There are several reasons for this: 1) Most of these schemes have been in place for a shorter time period. 2) They have relied on the U. S. evaluations for evidence of effectiveness. 3) Internal government studies may have been done, but these are hard to come by if you are not connected with researchers within the government in question. The only studies we have been able to find are displayed in Table 4. They cover Australia, Canada, France,

Japan, and Sweden, although neither the Canadian nor the Swedish study are currently applicable, as the tax incentives for R&D in these countries have changed substantially since the studies were done.

There have been several studies of Canadian data. Dagenais, Mohnen and Therrien (1998) analyse Canadian firms using the substantial variation in the R&D tax credit to construct a measure of the user cost. They estimate a generalised Tobit model for the R&D stock which allows the tax price to affect the amount of R&D performed as well as whether firms conduct R&D at all. They find a weakly significant effect on the former with a long run effect almost 20 times the short-run effect. Through a simulation exercise they find that a one per cent increase in the federal tax credit generates an average of $0.98 additional R&D expenditure per dollar of tax revenues foregone.

One of the most comprehensive and carefully done of these studies is that by the Australian Bureau of Industry Economics. It is noteworthy that the conclusions reached with respect to the tax price elasticity and benefit-cost ratio are similar to those in the recent United States studies. The methodology used compares the R&D growth rates for firms able and unable to use the tax credit for tax reasons. This has the obvious disadvantage that assignment to a control group is endogenous, and that the full marginal variation of the tax credit across firms is not used, only a dummy variable. In general, the survey evidence that asks firms by how much they increased their R&D due to the tax credit is consistent with the econometric evidence.

The French study by Amussen and Berriot (1993) encountered some data difficulties having to do with matching firms from the enterprise surveys, R&D surveys, and the tax records, so the sample is somewhat smaller than expected,
and may be subject to selection bias. The specification they used for the R&D demand equation includes the magnitude of the credit claimed as an indication of the cost reduction due to the credit. If all firms faced the same effective credit rate on the margin, it is easy to compute the tax price elasticity from the coefficient of this variable. Unfortunately, this is typically not true in France, so that this equation is not ideal for the purpose of estimating the tax price elasticity. Even so, Asmussen and Berriot obtain a plausible estimate of 0.26 (0.08), which is consistent with other evidence using similar French data and a true tax price.

Few studies have attempted to systematically compare the effectiveness of various R&D tax incentives across countries, partly because of the formidable obstacles to understanding the details of each system. McFetridge and Warda (1983) and Warda (1993) have constructed estimates of the cost of R&D for large numbers of major R&D-doing countries. Like the Bloom et al (1998) study discussed in section 2 they found that Japan, Germany, Italy, Sweden, and the United Kingdom had the highest tax cost of R&D projects and the United States, France, Korea, Australia, and Canada the lowest. Bloom, Griffith and Van Reenen (1999) use the user-costs calculated over eight countries in section 2 to analyse the effect on R&D. Like the micro studies they also find a long-run elasticity of about unity but a very low short run elasticity (0.16). More interestingly they identify significant effects of the foreign user cost of capital which they interpret to mean that changes in R&D tax credits can stimulate firms into relocating their R&D across borders. This raises a new dimension in the debate over the efficacy of tax credits. If some of the estimated increase comes from multinationals relocating their R&D laboratories it raises the question of tax competition over ‘footloose’ R&D.
The central conclusion at present from studies in other countries is not different from those using U. S. data: the response to an R&D tax credit tends to be fairly small at first, but increases over time. The effect of incremental schemes with a moving average base (France, Japan) is the approximately the same as in the United States: they greatly reduce the incentive effect of the credit.

5. Conclusions

In this paper we have considered the tax treatment of R&D and its effect on firm’s decisions. Because it is expensed R&D is tax privileged compared to fixed investment. There are also a host of special tax breaks, such as the US R&E credit that further subsidise R&D activities. These have varied extensively over time and across countries to a much greater extent than physical capital. Our sense is that the tax treatment of R&D is becoming more lenient and it is likely that countries will increasingly turn to the tax system and away from direct grants.

One feature of the existing schemes is that they imply very heterogenous prices facing firms. This variation is a useful source of identification of the effect of price changes on quantity demanded, although there are still relatively few studies that have used this. Taken as a whole there is substantial evidence that tax has an effect of R&D performed, the most compelling evidence coming from the quasi-experimental approach of calculating a user cost of R&D and estimating an explicit econometric model. A tax price elasticity of around unity is still a good ballpark figure, although there is a good deal of variation around this from different studies as one would expect.

Looking ahead there are several ways in which the literature could grow. First,
expanding beyond the US to other countries is a trend which clearly needs to be encouraged. International firm level datasets are becoming more widely available and we would emphasis to policy makers the imperative of having more open, objective, statistical evaluations of their policies. Secondly, there has been little attempt to use the variation in tax prices as an instrument for R&D in examining other variables of interest. For example we are interested in the question of the productivity effect of R&D and whether the tax credit could be used as a quasi-experiment to get better calculations of the return to R&D investments. Finally, the issue political economy cuts through many of the issues here. Why and when do government’s introduce tax breaks? Are they reacting to policies in other countries as the theory of tax competition suggests they will? Understanding the process by which different policies are conceived and come to life is as important as evaluating their effects once they are born and grown up.

References

A Nonseparable dynamic factor demand model” European Economic Review 30, 749-771

pared by the Staff of the Joint Committee on Taxation (January 27, 1992), JCS 2-92.

A. Measuring the User Cost of R&D

The user cost of R&D is calculated using the standard approach of Hall and Jorgensen (1967) and King and Fullerton (1984) and that was extended to the international setting in OECD (1991) and Devereux and Pearson (1995). The aim of this approach is to derive the pre-tax real rate of return on the marginal
investment project that is required to earn a minimum rate of return after tax. This will be a function of the general tax system, economic variables and the treatment of R&D expenditure in particular.

We consider a profit maximising firm which increases its R&D stock by one unit in period one, then disposes of that unit in the second period. The tax system affects the cost of making this investment in two ways. First, the revenue earned from the investment is taxed at rate τ. Second, the cost of the investment to the firm is reduced by depreciation allowances and tax credits.

Assuming that depreciation allowances are given on a declining balance basis at rate ϕ_t and begin in the first period the value of the depreciation allowance will be $\tau_t \phi_t$ in period one, and in subsequent periods the value falls by $(1 - \phi_t)$.12 Denote the net present value of the stream of these depreciation allowances A^d_t,

$$A^d_t = \tau_t \phi_t + \frac{\tau_t \phi_t (1 - \phi_t)}{(1 + r_t)} + \frac{\tau_t \phi_t (1 - \phi_t)^2}{(1 + r_t)^2} + \ldots = \frac{\tau_t \phi_t (1 + r_t)}{\phi_t + r_t}$$

where r_t is the discount rate and the asset and country subscripts have been omitted for simplicity.

Similarly we can calculate the net present value of the tax credit, A^c_t, which will depend on the type of tax credit available on R&D expenditure. The main features that affect the value of a tax credit are whether the credit applies to total or incremental expenditure, how the base level of expenditure is defined in the incremental case and whether the credit is capped on a firm by firm basis.

Under the assumption of perfect foresight and no tax exhaustion the net present value of an incremental tax credit with a base that is defined as the k-period moving average is

$$A^c_t = \frac{\tau_t}{k} (B_t - \frac{1}{k} \sum_{i=1}^{k} (1 + r_t)^{-i} B_{t+i}) \quad (A.1)$$

12In practice depreciation allowances generally begin in the second period, or are given at half the rate in the first period. This is taken account of in the empirical application. Depreciation allowances may also be given on a straight line basis, in which case the expression for A^d_t is slightly different.
where τ_i^c is the statutory credit rate, B_{i+i} is an indicator which takes the value 1 if R&D expenditure is above its incremental R&D base in period t and zero otherwise. If the credit has an absolute firm level cap, as in France, then A_t^c is assumed to be as above for firms below the credit caps and zero for those above the cap.

The depreciation allowances and tax credits vary across types of asset, countries and time. We consider investment in the manufacturing sector into three types of asset for use in R&D - current expenditure, buildings, and plant and machinery. An important assumption in the modelling strategy used here is that current expenditure on R&D is treated as an investment - that is its full value is not realised immediately. We also assume that domestic investment is financed by retained earnings.

In an individual country, the user cost of a domestic investment in R&D for each asset (indexed by j) is given by

$$\rho_{jt}^d = \frac{(1 - (A_{jt}^d + A_{jt}^c))}{(1 - \tau_t)} \cdot [r_t + \delta_j] \quad (A.2)$$

where δ_j is the economic depreciation rate of the asset. The economic depreciation rates used are 30% for current expenditure on R&D, 3.61% for buildings and 12.64% for plant and machinery. The domestic user cost of R&D for an individual country is then given by

$$\rho_i^d = \sum_{j=1}^{3} w_j \rho_{jt}^d \quad (A.3)$$

where w_j are weights equal to 0.90 for current expenditure, 0.064 for plant and machinery and 0.036 for buildings (see OECD (1991)). The tax component of the user cost of R&D is constructed using a constant real interest rate across countries and over time (10 per cent).

$$\rho_{jt}^{rd} = \frac{(1 - (A_{jt}^d + A_{jt}^c))}{(1 - \tau_t)} \quad (A.4)$$
<table>
<thead>
<tr>
<th>Country</th>
<th>Definition of R&D for Tax Credit</th>
<th>R&D Deprec. Rate</th>
<th>R&D Capital Deprec. Rate</th>
<th>Tax Credit Rate</th>
<th>Base for Incremental Tax Credit</th>
<th>Carryback and Carryforward</th>
<th>Credit Taxable?</th>
<th>Special Treatment for SMEs</th>
<th>Foreign R&D by Domestic Firms</th>
<th>R&D by Foreign Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Frascati, excl. soc sci. marketing, routine testing, etc.</td>
<td>100%</td>
<td>100% or 20% DB 20% ITC not buildings</td>
<td>20%</td>
<td>0</td>
<td>3 yr CB 10 yr CF</td>
<td>yes</td>
<td>40% to R=C$200K grant if no tax liab. 35% cap eq ITC up to $2M</td>
<td>expense no ITC, etc.</td>
<td>20% only?</td>
</tr>
<tr>
<td>France</td>
<td>Frascati, incl. patent dep. contract R, excl. office expenses & support personnel incl. upgrades, SW, overhead</td>
<td>100%</td>
<td>3-yr SL or 5 yr cap. (not buildings) accelerated</td>
<td>50%</td>
<td>(R(-1)+R(-2))/2 (real)</td>
<td>5-yr CF 5-yr for OL TC refunded</td>
<td>no recapture</td>
<td>TC<50MFF</td>
<td>no accel dep unless cons. no credit</td>
<td>?</td>
</tr>
<tr>
<td>Germany</td>
<td>Frascati, incl. Development, improvements, software cap. If acq. 4% SL - bldgs</td>
<td>100%</td>
<td>30% DB accelerated</td>
<td>none</td>
<td>NA</td>
<td>1/5 yrs NA</td>
<td>assistance via cash grant/ ITC</td>
<td>25% on royalties</td>
<td>25% on royalties</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Frascati, incl. Software</td>
<td>100%</td>
<td>or 5 yr cap.</td>
<td>none</td>
<td>NA</td>
<td>NA</td>
<td>yes, ceiling</td>
<td>25% on royalties</td>
<td>25% on royalties</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Frascati, incl. deprec of P&E, deferred charges benefit 1 yr incl. Software</td>
<td>100%</td>
<td>accelerated or 5 yr cap. 5% TC - bldgs</td>
<td>20%</td>
<td>max R since 66 (max at 10% tax liab.)</td>
<td>5-yr usual but credit limited to 10%</td>
<td>no</td>
<td>6%R instead (cap<Y100m)</td>
<td>6% credit for coop with foreign labs</td>
<td>20% on royalties</td>
</tr>
<tr>
<td>UK</td>
<td>no special definition; treated as an expense, however if "sci. res."</td>
<td>100%</td>
<td>100%</td>
<td>none</td>
<td>NA</td>
<td>5-yr CF NA</td>
<td>no</td>
<td>6% for envir./ health</td>
<td>6% for envir./ health</td>
<td>25% on royalties</td>
</tr>
<tr>
<td>US</td>
<td>excl. contract R (for doer), rev. engineering, prod. improv., 35% contract R</td>
<td>100%</td>
<td>3-yr., 15 yr. for bldgs</td>
<td>20%</td>
<td>avg of 84-88 R</td>
<td>3/15 yrs yes</td>
<td>R/S 3% for startups</td>
<td>not eligible</td>
<td>same as domestic</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1

The Tax Treatment of R&D around the World - G-7 Countries
<table>
<thead>
<tr>
<th>Country</th>
<th>Definition of R&D for Tax Credit</th>
<th>R&D Deprec. Rate</th>
<th>R&D Capital Deprec. Rate</th>
<th>Tax Credit Rate</th>
<th>Base for Incremental Tax Credit</th>
<th>Carryback and Carryforward</th>
<th>Credit Treatment for SMEs</th>
<th>Foreign R&D by Domestic Firms</th>
<th>R&D by Foreign Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Frascati, excl. soc sci, some testing, marketing overhead, software</td>
<td>150%</td>
<td>3-yr SL (not buildings)</td>
<td>none</td>
<td>NA</td>
<td>3/10 yrs</td>
<td>NA</td>
<td>ceiling; reduced credit for small R&D programs</td>
<td>no special provisions</td>
</tr>
<tr>
<td>Austria</td>
<td>Dev. & improv. of valuable inventions</td>
<td>105%</td>
<td>accelerated</td>
<td>none</td>
<td>NA</td>
<td>5 yr CF</td>
<td>NA</td>
<td>up to 10% of project cost incl in 1995?</td>
<td>no special provisions</td>
</tr>
<tr>
<td>Belgium</td>
<td>incl. Software</td>
<td>100%</td>
<td>3-yr SL or 3 yr cap.</td>
<td>20-yr - bldgs</td>
<td>none</td>
<td>5 yr CF</td>
<td>NA</td>
<td>10-15% addl capital deduction</td>
<td>no special provisions</td>
</tr>
<tr>
<td>Brazil</td>
<td>R&D in computer ind.</td>
<td>100%</td>
<td>like investment</td>
<td>none</td>
<td>NA</td>
<td>4 yr CF</td>
<td>NA</td>
<td>no special provisions</td>
<td>no special provisions</td>
</tr>
<tr>
<td>China (PRC)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30-50% on royalties</td>
</tr>
<tr>
<td>Denmark</td>
<td>Special tech programmes with EC researchers</td>
<td>100%</td>
<td>100%</td>
<td>?</td>
<td>?</td>
<td>5-yr CF</td>
<td>?</td>
<td></td>
<td>no special provisions</td>
</tr>
<tr>
<td>India</td>
<td>scientific research or knowhow</td>
<td>100%</td>
<td>100%</td>
<td>none</td>
<td>NA</td>
<td>?</td>
<td>NA</td>
<td></td>
<td>27% on royalties; tax treaties; 10-16% on royalties</td>
</tr>
<tr>
<td>Ireland</td>
<td>scientific research incl. software</td>
<td>100%</td>
<td>100% (not related)</td>
<td>15% otherwise</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>TC ceiling of 525000</td>
<td>no special provisions</td>
</tr>
<tr>
<td>Korea</td>
<td>experimental and research expenditure</td>
<td>100%</td>
<td>18-20% deprec</td>
<td>10%</td>
<td>0</td>
<td>?</td>
<td>no</td>
<td>yes; special rules for startups</td>
<td>no special provisions</td>
</tr>
<tr>
<td>Netherlands</td>
<td>W&S of R&D leading to prod. dev. (not services)</td>
<td>100%</td>
<td>like investment</td>
<td>12.5-25%</td>
<td>0</td>
<td>8-yrs CF</td>
<td>no</td>
<td>yes; ceiling on ITC max on R&D wages</td>
<td>no tax on royalties</td>
</tr>
<tr>
<td>Norway</td>
<td>prod. dev., capitalized knowhow</td>
<td>100%</td>
<td>like investment</td>
<td>none</td>
<td>NA</td>
<td>10-yr CF (res. reserve)</td>
<td>NA</td>
<td>no tax on royalties</td>
<td>no tax on royalties</td>
</tr>
<tr>
<td>Portugal</td>
<td>usual</td>
<td>100%</td>
<td>3-yr SL</td>
<td>none</td>
<td>NA</td>
<td>?</td>
<td>NA</td>
<td>does not apply</td>
<td>0-27% on royalties</td>
</tr>
<tr>
<td>Singapore</td>
<td>excl. soc. sci., quality control, software</td>
<td>100%</td>
<td>cap. except deprec. as</td>
<td>addl deduction (200%)</td>
<td>NA</td>
<td>?</td>
<td>NA</td>
<td>yes</td>
<td>35% on royalties</td>
</tr>
<tr>
<td>South Africa</td>
<td>scientific research development of tech.</td>
<td>100%</td>
<td>for R cap.</td>
<td>25% dep for cap.</td>
<td>none</td>
<td>?</td>
<td>NA</td>
<td>no special provisions</td>
<td>3.75-20% on royalties</td>
</tr>
<tr>
<td>Spain</td>
<td>excl. routine prod. improve., incl. software</td>
<td>100%</td>
<td>amortize over 5 yrs</td>
<td>100%</td>
<td>15%/30%</td>
<td>avg of last 2 yrs</td>
<td>5-yr CF - OL</td>
<td>NA</td>
<td>5-25% on royalties</td>
</tr>
<tr>
<td>Sweden</td>
<td>scientific research development of tech.</td>
<td>100%</td>
<td>30% DB</td>
<td>15%/30% on F.A.</td>
<td>NA</td>
<td>3-yr CF - TC</td>
<td>NA</td>
<td>35% on royalties</td>
<td>3.75-20% on royalties</td>
</tr>
<tr>
<td>Switzerland</td>
<td>none</td>
<td>100%</td>
<td>for 5 yr cap.</td>
<td>2% revenue</td>
<td>4 yr CF</td>
<td>NA</td>
<td>2-yr CF</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Taiwan</td>
<td>usual</td>
<td>100%</td>
<td>deprec. as usual</td>
<td>15%</td>
<td>2% revenue</td>
<td>4 yr CF</td>
<td>NA</td>
<td>10% addl capital deduction</td>
<td>no special provisions</td>
</tr>
</tbody>
</table>

TABLE 1 (cont.)
<table>
<thead>
<tr>
<th>Date of Study</th>
<th>Author(s)</th>
<th>Period of Credit</th>
<th>Control period</th>
<th>Data source</th>
<th>Data Type</th>
<th>Methodology</th>
<th>Controls</th>
<th>Estimated Elasticity</th>
<th>Estimated Benefit-Cost</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Collins (Eisner) and Sullivan</td>
<td>1981:2</td>
<td>1981-82</td>
<td>McGraw-Hill surveys</td>
<td>99 firms</td>
<td>(3) Event</td>
<td>R&D lag 1 & 2, current & lag sales, CF</td>
<td>insig.</td>
<td>< 1.0</td>
<td>Also used survey evidence, OTA computations</td>
</tr>
<tr>
<td>1986</td>
<td>Mansfield</td>
<td>1981-1983</td>
<td>not relevant</td>
<td>Stratified random survey</td>
<td>110 firms</td>
<td>(4) Survey</td>
<td>Asked if R&D tax incentive increased</td>
<td>0.35?</td>
<td>0.30 to 0.60</td>
<td>Increases get larger as time passes</td>
</tr>
<tr>
<td>1992</td>
<td>Swenson</td>
<td>1981-88</td>
<td>1975-80</td>
<td>Compustat</td>
<td>263 firms</td>
<td>(1) Dummy</td>
<td>Log R&D demand equation</td>
<td>1.0-1.5</td>
<td>1.74</td>
<td>Credit dummies depend on usability; stratified by tax status</td>
</tr>
<tr>
<td>1993</td>
<td>Berger</td>
<td>1981-89</td>
<td>1980 & 1980-80?</td>
<td>Compustat</td>
<td>263 firms</td>
<td>(1), (3)</td>
<td>Log R&D demand equation</td>
<td>0.75 (0.25)</td>
<td>1.3</td>
<td>Usability measures problematic</td>
</tr>
<tr>
<td>1992, 1993</td>
<td>Baily and Lawrence</td>
<td>1981-89</td>
<td>1960-80?</td>
<td>NSF R&D by ind</td>
<td>12 2-digit ind.</td>
<td>(1), (2) Elasticity</td>
<td>Log R&D demand eqn with tax price or credit dummy</td>
<td>1.0-1.5</td>
<td>2</td>
<td>Tax price assumes firm is taxpayer</td>
</tr>
<tr>
<td>1993</td>
<td>Hall</td>
<td>1981-91</td>
<td>1980</td>
<td>Compustat</td>
<td>800 firms</td>
<td>(2) Elasticity</td>
<td>Log R&D demand eqn with tax price var.</td>
<td>0.28-10.0?</td>
<td>0.29-0.35</td>
<td>Response larger in 86-91; IV estimation</td>
</tr>
<tr>
<td>1993</td>
<td>McCutchen</td>
<td>1982-85</td>
<td>1975-80</td>
<td>IMS data and 10Ks</td>
<td>20 large drug firms</td>
<td>(1) Dummy</td>
<td>Research intensity eqn by strategic group with tax credit</td>
<td>1.2-1.6</td>
<td>1.3-2.00</td>
<td>Higher response for low CF firms; problem with eqn nonhomothetic</td>
</tr>
<tr>
<td>1993</td>
<td>Hines</td>
<td>1984-89</td>
<td>not relevant</td>
<td>Compustat + surveys</td>
<td>116 multinationals</td>
<td>(2) Elasticity</td>
<td>R&D demand eqn with tax price for sec 861-8</td>
<td>1.2-1.6</td>
<td>0.95-1</td>
<td>Cost function approach</td>
</tr>
<tr>
<td>1996</td>
<td>Nadiri and Mamuneas</td>
<td>1956-1988</td>
<td>not relevant</td>
<td>Compustat, IRS ind. survey and 10Ks</td>
<td>15 industries</td>
<td>elasticity</td>
<td>R&D demand eqn with tax price & sales, Ind, firm dummies</td>
<td>output, public R&D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

Empirical Studies of the Effectiveness of the R&D Tax Credit - United States
<table>
<thead>
<tr>
<th>Country</th>
<th>Canada</th>
<th>Canada</th>
<th>Sweden</th>
<th>Canada</th>
<th>Japan</th>
<th>Australia</th>
<th>Canada</th>
<th>G7 and Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>McFetridge and Warda</td>
<td>Mansfield and Switzer</td>
<td>Mansfield</td>
<td>Bernstein</td>
<td>Goto and Wakasugi</td>
<td>Australian BIE</td>
<td>Bernstein</td>
<td>Bloom, Griffith and Van Reenen</td>
</tr>
<tr>
<td>Data source</td>
<td>Statistics</td>
<td>Stratified survey</td>
<td>Stratified random survey</td>
<td>prior estimates</td>
<td>ABS R&D survey</td>
<td>IR&D board</td>
<td>Canadian manufacturing sector (panel estimates)</td>
<td></td>
</tr>
<tr>
<td>Data Type</td>
<td>aggregate</td>
<td>55 firms (30% of R)</td>
<td>40 firms</td>
<td>firms?</td>
<td>>1000 firms</td>
<td>>1000 firms</td>
<td>sector estimates</td>
<td></td>
</tr>
<tr>
<td>Methodology</td>
<td>(2) Elasticity</td>
<td>(4) Survey</td>
<td>(4) Survey</td>
<td>(2) Elasticity</td>
<td>(1), (4) elasticity</td>
<td>cost function</td>
<td>elasticity with tax-adjusted user cost</td>
<td></td>
</tr>
<tr>
<td>Use elasticity of</td>
<td>0.6 and tax price of R&D</td>
<td>Asked if R&D tax incentive increased spending</td>
<td>Asked if R&D tax incentive increased spending</td>
<td>Multiply prior elasticity estimate times credit rate</td>
<td>Log R&D demand eqn with credit dummy approach</td>
<td>control/no control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>NA</td>
<td>No control years, unclear if these are total increases from tax credit</td>
<td>NA</td>
<td></td>
<td>Lag R&D, Log Size Growth, tax loss dummy Gov support dummy</td>
<td>output other factor prices</td>
<td>output lagged R&D, output country and time dummies</td>
<td></td>
</tr>
<tr>
<td>Estimated Elasticity</td>
<td>0.6</td>
<td>0.04-0.18</td>
<td>small</td>
<td>0.13</td>
<td>~1.0</td>
<td>0.14 in short-run</td>
<td>0.30 in long-run</td>
<td>1.1 in long-run</td>
</tr>
<tr>
<td>Estimated Benefit-Cost</td>
<td>0.60</td>
<td>0.38-0.67</td>
<td>0.3 to 0.4</td>
<td>0.83-1.73</td>
<td>0.6-1.0</td>
<td>.16 in short-run</td>
<td>.16 in short-run</td>
<td>.16 in short-run</td>
</tr>
<tr>
<td>Comments</td>
<td>Elasticity comes from Nadiri(1980) "tentative"</td>
<td>Elasticity estimated from McF&Warda tax cr. of 20% and obs. R increase</td>
<td>Increases get larger as time passes.</td>
<td>Larger figure includes output effects</td>
<td>increased R&D by 1%</td>
<td>Elasticity is comb. of survey evidence and control group analysis</td>
<td>find effect of tax credits on re-location decision</td>
<td></td>
</tr>
</tbody>
</table>

See the text for a more complete description of methodologies (1)-(4).
<table>
<thead>
<tr>
<th>France</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>1998</td>
</tr>
<tr>
<td>Asmussen and Berriot</td>
<td>Dagenais, Mohnen, and Therrien</td>
</tr>
<tr>
<td>1985-89</td>
<td>1975-92</td>
</tr>
<tr>
<td>DGI, and MRT data 339 firms</td>
<td>Canadian Compustat Statcan deflators 434 firms</td>
</tr>
</tbody>
</table>

(1) Demand

<table>
<thead>
<tr>
<th>Demand</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D demand eqn with log(credit)*</td>
<td>Log R&D stock eqn with log(credit)*</td>
</tr>
<tr>
<td>Indicator for ceiling</td>
<td>Sample sel. Model</td>
</tr>
</tbody>
</table>

Logs of gov subsidy, size, size sq, concentration, immob per head

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26 (.08)</td>
<td>0.40 (.25)</td>
</tr>
</tbody>
</table>

Estimated elasticity is credit elasticity divided by elasticity of tax price wrt credit

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>0.98 (LR)</td>
</tr>
</tbody>
</table>

Includes a selection eqn for doing R&D; elasticity derived from stock est. C-B includes output
Figure 1 - Tax Component of R&D user cost
Four Most Generous Countries
Figure 2 - Tax component of the user cost of R&D
Four Least Generous Countries
Figure 3
Distribution of the Effective R&D Tax Credit - U.S.
Figure 4
Distribution of the Effective R&D Tax Credit - Canada