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Abstract 
This paper sets out a general algorithm for calculating true cost-of-living indices or true producer price indices 

when demand is not homothetic, i.e. when not all expenditure elasticities are equal to one. In principle, 

economic theory tells us how we should calculate a true cost-of-living index or Konüs price index: first estimate 

the consumer’s expenditure function (cost function) econometrically and then calculate the Konüs price index 

directly from that. Unfortunately this is impossible in practice since real life consumer (producer) price indices 

contain hundreds of components, which means that there are many more parameters than observations. 

Index number theory has solved this problem, at least when demand is homothetic (all income 

elasticities equal to one). Superlative index numbers are second order approximations to any acceptable 

expenditure (cost) function. These index numbers require data only on prices and quantities over the time period 

or cross section under study. 

Unfortunately, there is overwhelming evidence that consumer demand is not homothetic (Engel’s 

Law). The purpose of the present paper is to set out a general algorithm for the nonhomothetic case. The 

solution is to construct a chain index number using compensated, not actual, expenditure shares as weights. The 

compensated shares are the actual shares, adjusted for changes in real income. These adjustments are made via 

an econometric model, where only the responses of demand to income changes need to be estimated, not the 

responses to price changes. This makes the algorithm perfectly feasible in practice. 

The new algorithm can be applied (a) in time series, e.g. measuring changes over time in the cost of 

living; (b) in cross section, e.g. measuring differences in the cost of living and hence the standard of living 

across countries; and (c) to cost functions, which enables better measures of technical progress to be developed. 

 

JEL Classifications: C43, D11, D12, E31, D24, I31, O47 

Keywords: Consumer price index, Konüs, cost of living, measurement of welfare change, Quadratic Almost 

Ideal Demand System, producer price index, homothetic, productivity 

 

 

This paper was produced as part of the Centre’s Productivity and Innovation Programme.  The Centre for 

Economic Performance is financed by the Economic and Social Research Council. 

 

 

 

Acknowledgements 
I owe thanks to Erwin Diewert for detailed comments and helpful suggestions on an earlier version. This paper 

benefited from the comments of participants at the 2010 Royal Economic Society conference (Surrey 

University, Guildford); the 6th North American Productivity Workshop (Rice University, Houston), particularly 

Bert Balk; and the 31st IARIW General Conference (St Gallen, Switzerland), particularly my discussant 

Marshall Reinsdorf. The final version also benefitted from the comments of two anonymous referees. None of 

the above is responsible for my conclusions or any errors. I am grateful also to the U.K. Economic and Social 

Research Council which has financed this research under ESRC grant number RES-000-22-3438. 

Nicholas Oulton is an Associate at the Centre for Economic Performance, London School of 

Economics. 

 

 

 

Published by 

Centre for Economic Performance 

London School of Economics and Political Science 

Houghton Street 

London WC2A 2AE 

 

All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system or transmitted in 

any form or by any means without the prior permission in writing of the publisher nor be issued to the public or 

circulated in any form other than that in which it is published. 

 

Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the 

above address. 

 

 N. Oulton, revised copy submitted 2012 
 

ISBN 978-0-85328-415-4 



3 

 

  

Table of contents 
1. Introduction ....................................................................................................................... 4 

1.1 The data problem ---------------------------------------------------------------------------------- 4 

1.2 Non-homotheticity --------------------------------------------------------------------------------- 6 

1.3 The algorithm--------------------------------------------------------------------------------------- 9 

1.4 Plan of the paper ----------------------------------------------------------------------------------10 

2. Price indices: the homothetic case ................................................................................... 10 

3. Estimating a true cost-of-living index over time: the non-homothetic case ....................... 13 

3.1 The Taylor series approach ----------------------------------------------------------------------13 

3.2 Specifying the demand system ------------------------------------------------------------------18 

3.3 The estimation procedure ------------------------------------------------------------------------22 

3.4 Comparisons across space -----------------------------------------------------------------------26 

4. Extensions to the basic analysis ....................................................................................... 26 

4.1 Aggregation over rich and poor consumers ---------------------------------------------------27 

4.2 Aggregation over different household types --------------------------------------------------29 

5. Cost functions: estimating input-biased scale economies and technical change ................ 30 

6. Conclusions ..................................................................................................................... 34 

Appendix ............................................................................................................................ 35 

A.1 Flexible functional forms: the homothetic case ............................................................. 35 

A.2 Proofs of propositions in section 3 ................................................................................ 38 

A.3 Aggregating over unequal incomes in the generalised PIGLOG .................................... 44 

References .......................................................................................................................... 47 

 

 



4 

 

1. Introduction 

 

This paper sets out an algorithm for measuring the true cost of living in the important case 

where demand is non-homothetic. The algorithm can be applied both to time series and to 

cross sections, e.g. cross-country studies of living standards. Essentially the same algorithm 

can be applied to the parallel problem of measuring the price of producers’ inputs, which in 

turn is a step on the road to measuring technical change. The algorithm is practical since it 

requires no more data than is needed to calculate conventional index numbers. And in 

principle it can be implemented at the same level of product detail at which conventional 

index numbers are constructed by national statistical agencies.  

Economic theory tells us how to measure the true cost of living: estimate the expenditure 

function econometrically and then calculate the Konüs price index. The Konüs price index for 

period t relative to some other period r is defined as the ratio of the (minimum) cost of 

achieving a given utility level at the prices of period t to the cost of achieving the same utility 

level at the prices of period r (Konüs, 1939); the utility level can be that of t, r or any other 

period. If we know the expenditure function then we can calculate the Konüs price index, for 

any chosen utility level. Similarly, economic theory tells us how to measure the true index of 

the cost of a producer’s inputs: estimate the producer’s cost function and calculate the 

analogue of the Konüs price index. If we know the cost function then we also know the 

degree of economies of scale, the size of any input biases in economies of scale, the growth 

rate of technical change, and the size of any input biases in technical change.  

However, though much work has been done on estimating systems of consumer demand 

or producers’ cost functions, the results of these studies are not typically employed by other 

economists in empirical work. For example, when macro economists study inflation 

empirically, they do not usually employ their micro colleagues’ estimates of expenditure 

functions. Rather they use consumer price indices constructed by national statistical agencies. 

The reason is clear. The economic approach cannot be applied at a level useful for other 

empirical economists because of data limitations.  

 

1.1 The data problem 

 

The economic approach cannot be employed because the number of parameters to be 

estimated is large and the number of observations is comparatively small. In other words the 
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problem is a purely practical one which might in theory be solved just by waiting long 

enough (possibly for hundreds of years). This causes a dilemma for the empirical economist 

who is unwilling to wait. Either the economic approach must be abandoned and index 

numbers employed instead. Or the data must be aggregated and the economic approach 

applied at a higher level. The first way, I shall argue later, is perfectly all right if demand (for 

consumer goods or producer inputs) is homothetic. But if it is not, then index numbers will 

not measure what they are supposed to measure. The second approach is more relevant to 

testing economic theory rather than to using it. In practice, empirical economists tend to use 

the index numbers (for output, inputs and prices) supplied to them by statistical agencies, 

without asking too many questions about the assumptions on which they are based.
1
  

The data problem can be illustrated by taking the Quadratic Almost Ideal Demand System 

(QAIDS) for N products of Banks, Blundell and Lewbel (1997) as an example. In the 

expenditure function of this system there are 1
2
( 1)( 2)N N− +  independent parameters 

relating to the consumer’s response to prices and 2( 1)N −  independent parameters relating to 

the consumer’s response to income, for a total (excluding a scale parameter) of 

1
2
( 1)( 6)N N− +  independent parameters. The QAIDS is a system of 1N −  independent 

equations for the expenditure shares. Roughly speaking, each of these equations contains on 

average 1
2
( 2)N +  independent coefficients relating to prices and two coefficients relating to 

income. To have any chance of estimating these coefficients econometrically we must have 

more observations than coefficients; i.e. if we have T aggregate time series observations, then 

we require 1
2
( 6)T N> + .  

This is where the empirical study of demand and the practice of index number 

construction part company. National statistical agencies construct their indices of the cost of 

living from hundreds of components. For example, the U.S. Bureau of Labor Statistics 

constructs its Consumer Price Index from 305 “entry-level items” (U.S. Bureau of Labor 

Statistics, 2007). The U.K.’s Consumer Prices Index and Retail Prices Index have some 650 

“items” (Office for National Statistics, 1998 and 2006). To estimate the parameters of the 

QAIDS for 650 products would require over three centuries of annual data, a requirement that 

                                                
1
  See for example the remarks of Tobin (1987) on the contributions of Irving Fisher to 

index number theory: “These index number issues do not seem as important to present-day 

economists as they did to Fisher. Knowing that they are intrinsically unsolvable, we finesse 

them and use uncritically the indexes that government statisticians provide”. Of course, I do 

not agree that these “index number issues” are “intrinsically unsolvable”, otherwise I would 

not have written this paper.  
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is not and is never likely to be met. So when econometricians use time series data to test the 

theory of demand, they are forced to aggregate the products into a small number of groups; 

e.g. Christensen et al. (1975) tested the theory of demand using three product groups over 

1929-72. But additional, strong assumptions on separability are needed to justify this 

aggregation (Deaton and Muellbauer, 1980b, chapter 5; Blackorby et al. (2008)); to test these 

assumptions would run into the same problem of insufficient data as just outlined and in 

practice this is never done. So the “prices” and “quantities” which are the basic data for 

testing the theory of demand in this kind of study are themselves index numbers.
2
 But then 

the theoretical justification for these index numbers is unclear. Cross section studies of 

household demand fare better since in any given year it may be reasonable to assume prices 

are the same for all households (except for regional effects). With typically several thousand 

observations in any cross section, lack of observations is not such a problem. But then only 

the effects of income (and of household composition) on demand can be measured, as in e.g. 

Blow, Leicester and Oldfield (2004).
3
  

The upshot is that all the empirical work that economists have done on household demand 

has had no effect on the measurements actually made by national statistical agencies 

(although the underlying theory may have been influential). Similar remarks apply to the 

measurement of other indices such as the producer price index.  

 

1.2 Non-homotheticity 

 

Actually, none of this matters much provided that demand (for consumer goods or inputs) is 

homothetic. If this condition holds and if we are prepared to accept that economic theory is 

true,
4
 then we have no need to estimate cost or expenditure functions. We can instead 

estimate a discrete approximation to a Divisia index (which I show is the ideal measure in 

                                                
2
  Latent separability (Blundell and Robin, 2000) imposes fewer restrictions than weak 

separability. But it is still necessary to estimate a complete demand system in order to 

determine which goods belong in which groups.  
3
  Cross section studies also often employ highly aggregated data: five product groups in the 

case of Banks et al. (1997), eight in the case of Blundell et al. (2007), both studies of British 

household budgets, and 11 in the case of Neary (2004), a cross-country study of 1980 PPPs. 

The panel study on Canadian households of Lewbel and Pendakur (2009) employed nine 

groups.  
4
  Throughout this paper I adopt the economic approach to index numbers; see Diewert 

(1981) and (2008) for surveys of this and of the alternative axiomatic and stochastic 

approaches, also Balk (2008) on the axiomatic approach.  
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this case), using the superlative index numbers of Diewert (1976) with their flexibility 

improved by chaining.  

Unfortunately, an overwhelming body of empirical evidence establishes that consumer 

demand is not homothetic. The most obvious manifestation of this is Engel’s Law: the 

proportion of total household expenditure devoted to food falls as expenditure rises. Since its 

original publication in 1857, Engel’s Law has been repeatedly confirmed. Houthakker (1957) 

showed that the Law held in some 40 household surveys from about 30 countries.
5
 Engel’s 

Law also holds in the much more econometrically sophisticated study of Banks et al. (1997) 

on UK household budgets. The prevalence of non-homotheticity is also confirmed by the 

more disaggregated studies of Blow et al. (2004), also on U.K. household budgets, which 

considered 18 product groups, Oulton (2008) who considered 70 product groups and Oulton 

(2012), 100 product groups.
6
  

 If demand is not homothetic, then superlative index numbers are not guaranteed to be 

good approximations to Konüs price indices, even locally. In fact the true price index may lie 

outside the Laspeyres-Paasche spread. And the true price index is no longer unique but 

depends on the reference level chosen for utility (or, for the producer price index, on the 

reference output level). The fact that the Konüs price index generally varies with the 

reference utility level is sometimes taken as puzzlingly paradoxical. But it can be given a 

simple intuitive justification. Consider a household with a very low standard of living 

spending 60% of its budget on food (as was the case with the working class households 

                                                
5
  Engel’s (1857) results for expenditure by households of various income levels in Saxony 

are described more accessibly in Marshall (1920), chapter IV; see Chai and Moneta (2010) 

for a modern account of Engel’s work. In each of the surveys that he collected Houthakker 

(1957) estimated the elasticity of expenditure on food and three other groups (clothing, 

housing and miscellaneous) with respect to total expenditure and to household size. For each 

product group, he regressed the log of expenditure on that group on the log of total 

expenditure and the log of family size. He used weighted least squares on grouped data; 

individual data was not available to him. The results for food were clear-cut: demand was 

inelastic with respect to expenditure in every survey. The results for clothing and 

miscellaneous were equally clear-cut: demand was expenditure-elastic. The result for housing 

was more mixed.  
6
  An exception to this consensus is Dowrick and Quiggin (1997). They studied the 1980 

and 1990 PPPs for 17 OECD countries, using 38 components of GDP, and argued that the 

data could be rationalised by a homothetic utility function. But their anomalous finding may 

be due partly to the fact that the per capita incomes of these countries were fairly similar, 

partly to the fact that some of the 38 components were not household spending, and partly to 

the low power of their nonparametric test (Neary, 2004). By contrast Crawford and Neary 

(2008) found that the cross-country data in Neary (2004) — 11 commodity groups in 60 

countries from the World Bank’s 1980 ICP — are rationalizable by a single non-homothetic 

utility function, but not by any homothetic utility function.  
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studied by Engel in 1857). Suppose the price of food rises by 20%, with other prices constant. 

Then money income will probably have to rise by close to (0.60 x 20% = ) 12%, to leave 

utility unchanged, since there are limited possibilities for substituting clothing and shelter for 

food. Compare this household to a modern day British one, spending 15% of its budget on 

food prepared and served at home (Blow et al., 2004). Now the maximum rise in income 

required to hold utility constant is only (0.15 x 20% = ) 3% and probably a good bit less as 

substitution opportunities are greater.  

 This leaves the welfare interpretation of conventional consumer price indices and their 

cross-country cousins, the Purchasing Power Parities (PPPs) constructed by the OECD and 

the World Bank, somewhat up in the air. If the true price index depends on the reference level 

of utility, how are we to interpret real world price indices? The answer in the time series 

context is that a chained, superlative index is likely to be approximately equal to a true price 

index with reference utility level at the midpoint of the sample period (Diewert, 1976 and 

1981; Feenstra and Reinsdorf, 2000; Balk 2004).
7
 For a cross-country comparison, the 

viewpoint will be that of a “middle” country. While there is nothing wrong with this 

viewpoint, there is no special reason why the midpoint should be so privileged. There is also 

the disadvantage that when the sample period is extended (or the number of countries in the 

comparison increased), the viewpoint changes.  

A parallel issue arises on the production side and takes the form of input biases in 

economies of scale: if output is doubled, holding prices and technology constant, does that 

leave all cost shares unchanged? The possibility that this is not the case has certainly been 

entertained as a matter of theory, though I am not aware of any substantial body of empirical 

work devoted to this issue. But such a situation may be quite common. Consider a firm which 

has fixed and variable costs, where the fixed costs are white collar workers and the variable 

                                                
7
  Suppose a utility function exists which rationalises the data but may be non-homothetic. 

Diewert (1981) showed that there exists a utility level which is intermediate between the 

levels at the endpoints of the interval under study such that a Konüs price index over this 

interval, with utility fixed at the intermediate level, is bounded below by the Paasche and 

above by the Laspeyres. Balk (2004) showed that when the growth of prices is piecewise log 

linear a chained Fisher price index approximates a Konüs price index over an interval when 

the reference utility level is fixed at that of some intermediate point in the interval. More 

precise results are available for specific functional forms. Diewert (1976) showed that a 

Törnqvist price index is exact for a non-homothetic translog cost function when the reference 

utility level is the geometric mean of the utility levels at the endpoints; see also Diewert 

(2009) for extensions. For the AIDS, Feenstra and Reinsdorf (2000) showed that, if prices are 

growing at constant rates, the Divisia index between two time periods equals the Konüs price 

index when the reference utility level is a weighted average of utility levels along the path.  
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costs are blue collar workers. Then an expansion of output will lower the share of white 

collar workers in total costs. In this case the cost function is non-homothetic and also non-

homogeneous in output. So it would certainly seem desirable to take non-homotheticity into 

account when trying to measure TFP.  

 

1.3 The algorithm 

 

The proposed algorithm can be summarised as follows. The growth rate of a Konüs consumer 

price index resembles that of a Divisia index (or the latter’s empirical counterpart, a chain 

index) in that it is an expenditure-share-weighted average of the growth rates of the 

component prices. But for the Konüs index the shares are not the actual, observed ones, but 

rather what I call the compensated shares: the shares that would be observed if prices were 

the actual, observed ones but utility were held constant at some given reference level. I derive 

a relationship between the compensated and the actual shares: the compensated shares are 

equal to the actual ones, adjusted for the difference in real income (utility) between the actual 

situation and the reference level. The adjustment requires us to know, for each product, the 

consumer’s response to real income changes but not the response to price changes. This is 

why the algorithm can be implemented at a very disaggregated level, since the number of 

parameters needed to describe the consumer’s response to income changes is quite small: in 

the case of the QAIDS only two parameters for each product need to be known. These 

income response parameters can be estimated econometrically, provided we do not try at the 

same time to estimate the responses to individual price changes. This can be done by 

estimating a flexible demand system such as the QAIDS but with the price variables replaced 

by a much smaller number of principal components. In this way the data limitation problem 

can be overcome.  

 It is important to note that the algorithm proposed here is not designed as a test of 

whether the theory of consumer (or producer) demand is true. Rather it seeks to use demand 

theory to construct better measures of living standards and productivity. In fact, the algorithm 

assumes that demand theory is true and hence that the consumer’s or producer’s responses 

can be approximated by a flexible system like the QAIDS.  
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1.4 Plan of the paper 

 

I start in section 2 with the homothetic case. I show that a Divisia index provides an ideal 

measure and that this can be well approximated by a chained, superlative index number. In 

section 3 I go on to consider the non-homothetic case and present a general algorithm for 

estimating a true (Konüs) price index for a representative consumer. The algorithm requires 

just the same data (and no more) as would be required to estimate a conventional index 

number. This algorithm is illustrated more specifically for the QAIDS. I argue that it can be 

applied both to time series and to cross section (e.g. cross country studies). In section 4 the 

analysis is extended by dropping the assumption of a representative consumer. I show how 

the QAIDS can be adapted to allow for inequality in the distribution of income. It turns out 

that this just requires adding two additional variables, both statistics of the income 

distribution, to the share equations of the QAIDS. The algorithm derived for the simpler case 

of a representative consumer can then be applied much as before. This section also discusses 

including household characteristics as additional determinants of demand. Section 5 shows 

how the general method applies, after some adaptation, to the estimation of a true input price 

index for producers, in the case where economies of scale may exist and may be input-biased. 

The algorithm enables input biases in economies of scale and in technical change to be 

estimated simultaneously. Finally, section 6 concludes.  

 

 

2. Price indices: the homothetic case 

 

In this section I argue that chained, superlative index numbers have solved the problem of 

measuring the true cost of living for a single, representative consumer in the case where 

demand is homothetic.  

Let the consumer’s expenditure function be  

 ( , ), / 0x E u x u= ∂ ∂ >p                   

This shows the minimum expenditure x needed to reach utility level u when 1 2( ... )Np p p=p  

is the Nx1 price vector faced by the consumer; i ii
x p q=∑  where the iq  are the quantities 

purchased. Expenditure at time t is therefore a function of prices at time t and the utility level. 

The expenditure function is assumed to possess derivatives of all orders. Suppose that, 

hypothetically, utility were held at its level at time b while the consumer faced the prices of 
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time t. Let ( , )x t b  denote the minimum expenditure at the prices of time t required to achieve 

the utility level of time b. Then  

( , ) ( ( ), ( ))x t b E t u b= p                   (1) 

For brevity write the right hand side as  

 ( , ) ( ( ), ( ))E t b E t u b= p  

where the first argument of ( , )E t b  is the time period for prices and the second is the time 

period for utility. The Konüs price index at time t relative to time r, with time b as the base 

period for utility, is defined as the ratio of the minimum expenditure required with the prices 

of time t to attain the utility level of time b, to the minimum expenditure required to attain 

this same utility level, when the consumer faces the prices of time r:  

 ( , , ) ( , ) / ( , )KP t r b E t b E r b=                (2) 

In other words, period r is the reference period and period t is the base period. (Clearly, 

( , , ) 1KP r r b = ). The base period b might be the same as the reference period ( )b r= , or the 

same as the current period ( )b t= , or it might be some other period. In general, the Konüs 

price index depends on both the prices and the specified utility level. However as is well 

known, the index is independent of the utility level and depends only on the prices if and only 

if demand is homothetic, i.e. if all income elasticities are equal to one (Konüs, 1939; 

Samuelson and Swamy, 1974; Deaton and Muellbauer, chapter 7, 1980b).  

Let is  denote the share of product i in total expenditure. Applying Shephard’s Lemma to 

the expenditure function, we obtain the share functions:  

 
ln ( , )

, 1,...,
ln

i

i

E
s i N

p

∂ ⋅ ⋅
= =

∂
                (3) 

The expenditure shares clearly depend on both prices and utility. Let the share of product i in 

total expenditure at time t, if utility were fixed at the level of period v, be ( , )is t v . Evaluating 

this function with the prices of time t and the utility level of time b we have  

 
ln ( , )

( , ) , 1,...,
ln ( )

i

i

E t b
s t b i N

p t

∂
= =

∂
                 

These can be called the hypothetical or compensated (Hicksian) shares, the shares that would 

be observed if utility were held constant at some reference level (here, the level prevailing in 

period b), while prices followed their observed path. The actual, observed shares in period t 

are  
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ln ( , )

( , ) , 1,...,
ln ( )

i

i

E t t
s t t i N

p t

∂
= =

∂
                

Note that the compensated shares in the base period b, ( , )is b b , are the same as the actual 

shares in that period.  

 By totally differentiating the Konüs price index of equation (2) with respect to time, we 

obtain  

 
1 1

ln ( ) ln ( )ln ( , , ) ln ( , )
( , )

ln ( )

K
i N i Ni i

ii i
i

d p t d p td P t r b E t b
s t b

dt p t dt dt

= =

= =

∂
= =

∂
∑ ∑     (4) 

So the level of the Konüs price index in some period T, relative to its level in the reference 

period r, is found by integration:  

 
1

ln ( )
ln ( , , ) ( , ) , ( , , ) 1

T i NK Ki
iir

d p t
P T r b s t b dt P r r b

dt

=

=

  
= =  

  
∑∫        (5) 

The Konüs price index resembles a Divisia index ( DP ) which is defined as:  

 
1

ln ( )
ln ( , ) ( , ) , ( , ) 1

T i ND Di
iir

d p t
P T r s t t dt P r r

dt

=

=

  
= =  

  
∑∫         (6) 

The only difference between them is that the Konüs index employs the compensated, not the 

actual, shares as weights (Balk, 2005; Oulton, 2008).
8
 However, in the homothetic case the 

compensated and the actual shares are always the same: ( , ) ( , ), ,i is t b s t t i b= ∀ , since shares 

depend only on prices, not on utility (or real income); that is, the Konüs and Divisia indices 

are identical. So in this case the task of index number theory is to find the best discrete 

approximation to the continuous Divisia index of equation (6).  

In fact in the homothetic case the problem of estimating true cost-of-living indices and 

indices of the standard of living, together with their counterparts on the production side, has 

been solved, at least within the limit of what is empirically possible. The solution was in fact 

provided by Diewert’s superlative index numbers, index numbers which are exact for some 

flexible functional form (Diewert, 1976). In the homothetic case, the true index is bounded by 

the Laspeyres and Paasche indices (Konüs, 1939). But superlative index numbers are only 

                                                
8
  Since it is a line integral, the Divisia index is in general path-dependent unless demand is 

homothetic, as its inventor Divisia (1925-26) was well aware; see Hulten (1973) for detailed 

discussion and Apostol (1957), chapter 10, for the underlying mathematics. But the Konüs 

price index, the right hand side of equation (5), is not path-dependent since by definition 

utility is being held constant along the path (Oulton, 2008).  
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guaranteed to be good approximations locally, so they need to be chained together in order to 

approximate better the continuously changing weights in the Divisia index (6).
9,10

  

Unfortunately, the assumption of homotheticity is a very dubious one for consumer 

demand. As argued earlier, there is overwhelming evidence from household surveys that 

income elasticities are not all equal to one. Economists have been somewhat readier to accept 

the assumption of constant returns to scale in the case of producers, but even so this 

assumption should ideally be tested. The next section therefore turns to the non-homothetic 

case.  

 

 

3. Estimating a true cost-of-living index over time: the non-homothetic case 

3.1 The Taylor series approach 

 

In this section I consider the problem of how to estimate a true cost-of-living index over time 

when demand is non-homothetic and there are insufficient time series observations available 

to estimate the consumer’s expenditure function.
11

 This might be called the “large N, small T” 

problem: there are a large number of products but only a small number of time periods. This 

is the typical situation faced by national statistics agencies when for example estimating the 

consumer price index. Throughout this section I assume a single, representative consumer. In 

the next section this assumption will be relaxed.  

Equation (5) shows that in order to calculate the Konüs price index in practice, we need to 

know the compensated shares, which differ in general from the actual ones in the non-

homothetic case. We seek a way of at least approximating the compensated shares, which 

cannot of course be directly observed (except for the ( , )
i

s b b  which are both the actual and 

the compensated shares in period b). We can do this by expressing the actual shares ( , )is t t in 

                                                
9
  Diewert (1976) was well aware of the need for chaining: see his footnote 16. For more on 

superlative indices, including discussion of the critique of them by Hill (2006), see section 

A.1 of the Appendix.  
10

  Using an axiomatic approach, van Veelen (2002) has proved an impossibility theorem 

which purports to rule out an economically acceptable solution to the problem of measuring 

the standard of living, both internationally and intertemporally. However, his 4
th

 and final 

axiom, “Independence of irrelevant countries” (or irrelevant time periods), would rule out the 

use of chain indices. On the economic approach the latter are essential to derive good 

approximations to Divisia indices.  
11

  The argument of this section is a generalisation of the one set out in Oulton (2008).  
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terms of a Taylor series expansion of the compensated shares ( , )is t b  in equation (3) around 

the point ln ln ( , )x E t b= , i.e. holding prices constant at their levels at time t and varying 

expenditure (utility). When this is done we can establish the following Proposition:  

Proposition 1  The differences between the compensated and the actual shares depend 

on (a) the difference in real expenditure between the base period and the current period and 

(b) the consumer’s response to real expenditure changes. The differences do not depend on 

the consumer’s response to price changes. More precisely,  
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η
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η

    
= − −     
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  
− − = ∈  

  
…

  (7) 

where  

 
( ),
( , )

( , )
( , ) , 1,2,...; 1,...,

ln ( , )

k

i

ik k
t

x E t b

s
t b k i N

E
η

=
=

 ∂ ⋅ ⋅
= = = 

∂ ⋅ ⋅ p p

         (8) 

Proof   Take a Taylor series expansion of the share function ( , )is t t  with respect to its 

second argument around the point ( , )is t b : see section A.2 of the Appendix.  

The partial derivative 1( , )i t bη is the semi-elasticity of the budget share of the ith product 

with respect to expenditure, with prices held constant; it is evaluated at base year utility and 

at the prices of time t. It measures the consumer’s response to expenditure changes, as 

asserted in Proposition 1. These semi-elasticities and the higher order derivatives in (7) 

measure basic aspects of consumer behaviour. The terms in square brackets measure the 

proportionate difference between real expenditure at time t and at time b. Note that if the 

expenditure function is a Kth order polynomial in log expenditure, then the Taylor series 

effectively terminates after K terms, since , 1 , 2 ... 0i K i Kη η+ += = = . So equation (7) with terms 

higher than powers of K in log expenditure omitted is then exact and not an approximation.  

The system of equations (7) might not appear to take us very much further if our goal is to 

estimate the Konüs price index, since the latter appears on the right hand side. But in fact this 

system, together with (4), is the basis for a practical method. Suppose that the 1( , )i t bη  and 

the higher order derivatives 2 ( , )i t bη , 3( , )i t bη , etc, that are required for a good approximation 
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were somehow known or could be estimated (see the next section on ways to do this). Then 

we could estimate the Konüs price index using equation (4) and (7). This is because these 

equations constitute a set of equations for ( , , )KP t b b  and hence for ( , , )KP t r b ,
12

 in which the 

compensated shares and the Konüs price index are the only unknowns; the actual shares 

( , )is t t , the nominal expenditures ( , )x t t  and ( , )x b b , and (by assumption) the semi-

elasticities ( 1( , )i t bη , 2 ( , )i t bη , etc) are all known.  

The general procedure for solving these equations is straightforward in principle. First, 

we need to take discrete approximations. Equations (7) must be understood to hold in discrete 

not continuous time, i.e. for 0,1,...,t T= . We must also decide how many terms in the Taylor 

series are required. If the utility function is quadratic in log expenditure, then only the first 

two terms of the Taylor series are needed: see the next section. Equation (4) must be replaced 

by a discrete approximation, e.g. a chained Törnqvist or chained Fisher formula.  

 Let us define the following chained, compensated index numbers. Each index number is 

for period t  relative to period r, with utility held constant at the level of period b.  

Compensated Törnqvist: 

 
1

( , ) ( , ) ( )
ln ( , , ) ln

2 ( )

i NCT i i i

i
i

s t b s r b p t
P t r b

p r

=

=

 + 
=   

   
∑               (9) 

Compensated Laspeyres:  

 
1

( )
( , , ) ( , )
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i NCL i
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i

p t
P t r b s r b

p r

=

=
=∑              (10) 

Compensated Paasche:
13

  

 

1

1

( )
( , , ) ( , )

( )

i NCP i
ii

i

p r
P t r b s t b

p t

−

=

=

 
=  
 
∑             (11) 

Compensated Fisher:  

 1/2( , , ) [ ( , , ) ( , , )]CF CL CP
P t r b P t r b P t r b= ⋅            (12) 

Each of these index numbers is defined in the same way as its empirical counterpart, except 

that compensated, not actual, shares are used. If 1r t= −  these compensated indices are the 

links in the corresponding chained index. The natural choices for discrete approximations to 

                                                
12

  From the definition of the Konüs in equation (2), ( , , ) ( , , ) / ( , , )K K K
P t r b P t b b P r b b= .  

13
  The formula for the Paasche is not the usual one but is mathematically equivalent to the 

usual one.  
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the continuous Konüs price index are either the compensated Törnqvist, equation (9), or the 

compensated Fisher, equation (12). We now have  

 

Proposition 2  The true index is bounded by the compensated Laspeyres and the 

compensated Paasche. This is the case when we are looking at links in a chain index, i.e. 

when we are comparing two adjacent years (or countries):  

 ( , 1, ) ( , 1, ) ( , 1, )CL CK CP
P t t b P t t b P t t b− ≥ − ≥ −           (13) 

It is also true when we are looking at a bilateral (two-period or two-country) index, 

comparing year (country) t with reference year (country) r, with year (country) b as the base:  

 ( , , ) ( , , ) ( , , )CL K CP
P t r b P t r b P t r b≥ ≥              (14) 

Proof  Since utility is being held constant at its level in period b, the proof of Proposition 

2 follows similar lines to that of the well-known Konüs (1939) inequalities: see section A.2 of 

the Appendix for the details.  

We also need to take account of the Konüs (1939) inequalities relating actual Laspeyres 

and Paasche price indices to Konüs indices. Denote the actual Laspeyres and Paasche price 

indices for year (country) t relative to year (country) r by ( , )L
P t r  and ( , )P

P t r  respectively. 

(So the Laspeyres index uses the weights of year (country) r and the Paasche uses the weights 

of year (country) t). Then the Konüs (1939) inequalities state that  

  ( , ) ( , , ) and  ( , ) ( , , )L K P K
P t r P t r r P t r P t r t≥ ≤          (15) 

A Konüs index is only guaranteed to lie within the actual Laspeyres-Paasche spread if 

demand is homothetic so that ( , , ) ( , , ).K K
P t r r P t r t=   

 The Laspeyres-Paasche spreads, calculated using either compensated or actual shares, can 

be used as a check on the accuracy of whatever index number formula is adopted.
14

  

 Equations (7) now constitute a system of ( 1)( 1)N T− +  independent equations since the N 

shares sum to one in each period.
15

 Together with (4), this system can be solved iteratively:
16

  

                                                
14

  Of all superlative index numbers, only the Fisher is guaranteed to lie within the 

Laspeyres-Paasche spread (Hill, 2006), assuming all use indices compensated or all use 

actual shares, and all are chained or all are bilateral. But a chained Fisher is not guaranteed to 

lie within a bilateral Laspeyres-Paasche spread.  
15

  The actual shares of course sum to one and since they derive from the expenditure 

function so do the compensated shares: see equation (3).  
16

  If the Engel curves are log-linear, i.e. all the ikη  are zero except the 1iη , then the whole 

system is linear and an explicit solution for the compensated shares is available: see section 

A.2 of the Appendix.  
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1. Start with an initial guess at ( , )K
P t b : this could be derived as a chained Törnqvist 

or chained Fisher index which uses actual not compensated shares.  

2. Substitute this estimate of ( , )K
P t b  into (7) to get estimates of the compensated 

shares for each of 1N −  products and for each of 1T + time periods; the share of the 

Nth product can be derived as a residual.  

3. Use these estimates of the compensated shares to obtain a new estimate of ( , )K
P t b  

from either of the two discrete approximations to (4), the Törnqvist (equation (9)) or 

the Fisher (equation (12)).
17

  

4. Check whether the estimate of ( , )K
P t b  has converged. If not, return to step 2.  

 The intuition behind this result is as follows. In the homothetic case it turns out that we do 

not need to know the individual parameters of the expenditure function: the observed shares 

encapsulate all the required information. In the non-homothetic case, we need to know the 

compensated shares. These can be thought of as like the actual shares, but contaminated by 

the effects of changes in real income (expenditure). What is needed is to purge the actual 

shares of income effects.  

The algorithm is not guaranteed to converge; the convergence issue is discussed in 

section A.2 of the Appendix. A practical approach to convergence is suck it and see. If the 

algorithm diverges there are refinements which improve the chances of convergence: see the 

discussion of dampening in section 3.9 of Judd (1998).  

 So given knowledge of the ikη  up to the required order, we can estimate the Konüs price 

index. Estimating the ikη  themselves may still seem a difficult task but notice that only the 

response of demand to changes in real income needs to be known, not the response to price 

changes. This is a very significant reduction in the complexity of the task empirically.  

It is possible that estimates of the ikη  are available “off the shelf” in which case the 

problem is solved. The response to expenditure changes can be estimated from cross-section 

data since prices can usually be assumed to be the same for all households in a given region 

(see e.g. Blow et al. (2004)). But cross-section estimates may not be available
18

 or, even if 

they are, the product classification may be different. In the absence of ready-made estimates, 

                                                
17

  In step 3 of the algorithm it is assumed that the observations are arranged in the natural 

time order. See below for a refinement.  
18

  The latest round of the World Bank’s International Comparison Program has generated 

prices and expenditures for 106 products classified to “Actual individual consumption”, for 

each of 146 countries. But there are no corresponding micro data for these countries.  
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is it possible to estimate these parameters from the aggregate data available to national 

statistical agencies — the same data that they use to construct conventional index numbers? 

The answer is yes. To make further progress I turn now to consider systems of demand which 

are consistent with economic theory and also seem capable of fitting the data reasonably well.  

 

3.2 Specifying the demand system 

 

If we want to implement the algorithm set out in the previous sub-section in the absence of 

off-the-shelf estimates of the semi-elasticities 
ikη , then we need to choose a specific model of 

consumer demand. The PIGLOG demand system, introduced by Muellbauer (1976) (see also 

Deaton and Muellbauer (1980a and 1980b, chapter 3)) has found wide application 

empirically.
19

 The PIGLOG expenditure function is:  

 ln ln ( ) ( ) lnx A B u= +p p                 (16) 

Here ( ) 0A ≥p  and ( ) 0B >p  (non-satiation). Also, ( )A p  is assumed homogeneous of degree 

one and ( )B p  homogeneous of degree zero in prices. An example of the PIGLOG is the 

Almost Ideal Demand System (AIDS) in which case ( )A p  takes the translog form.  

 This expenditure function gives rise to Engel curves which are linear in the log of 

expenditure. However, a linear relationship does not fare well empirically (Banks et al., 

1997; Blow et al., 2004; Oulton, 2008) and it is found necessary to add a squared term in the 

log of expenditure to the share equations. A squared term arises if the utility function takes 

the following form, known as the generalised PIGLOG: 

 

1
1

ln ln ( )
ln ( )

( )

ln[ / ( )]

( ) ln[ / ( )] ( )

x A
u

B

x A

B x A

λ

λ

−−  − 
= +  

   

=
+

p
p

p

p

p p p

             (17) 

                                                
19  Other approaches are possible. Balk (1990) employed the Rotterdam demand system to 

estimate an approximate Konüs price index for an aggregate time series of Dutch data. His 

method depended on the marginal budget shares ( / )i ip q x∂ ∂  being constant within the 

sample, a property which does not hold in the PIGLOG demand system. See also Balk (1995) 

for a survey of other methods of approximating a cost-of-living index.  
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where ( )λ p  is a differentiable, homogeneous function of degree zero in prices p and 

( ) 0λ ≥p . The generalised PIGLOG retains the exact aggregation property of the simple 

PIGLOG (see section 4). The corresponding expenditure function is:  

 
( ) ln

ln ln ( )
1 ( ) ln

B u
x A

uλ
= +

−

p
p

p
               (18) 

(This reduces to the simple PIGLOG system (16) when ( ) 0λ =p ).
20

  

Applying Shephard’s Lemma, and after substituting for u from (17), the expenditure 

shares in this demand system are:  

 
2ln ( ) ln[ / ( ] ( ) [ln[ / ( )]] ( )

ln ( ) ln ( ) ln
i

i i i

A x A B x A
s

p B p B p
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= + +

∂ ∂ ∂

p p p p p

p p
       (19) 

I now follow Banks et al. (1997) and adopt the following specification for ( )B p  and ( )λ p :  
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Under this specification,  
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so the system of share equations (19) becomes  

 

2

1

ln ( )
ln ln

ln ( ) ( )k

i
i i k N

i kk

A x x
s

p A Ap
β

λ
β

=

=

    ∂
= + +     

∂     ∏

p

p p
        (22) 

What is the relationship between compensated and actual shares in this demand system? 

In equation (7) above we found a Taylor series expansion for the compensated shares which 

                                                
20

  The generalised PIGLOG can be justified theoretically along the following lines. A 

desirable property of a demand system is that it be exactly aggregable. Exactly aggregable 

demand systems are those which are linear in functions of x. Gorman (1981) proved that the 

maximum possible rank of any exactly aggregable demand system is 3, where the rank of a 

demand system is the dimensions of the space spanned by its Engel curves (Lewbel (1991)). 

(The empirical evidence on Engel curves indicates that observed demands are at least rank 3.) 

Theorem 1 of Banks et al. (1997) states that all exactly aggregable, rank 3, demand systems 

which just add a differentiable function of deflated expenditure to the utility function 

corresponding to equation (16) are derived from a utility function of the form (17).  
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involved the semi-elasticity of the shares with respect to real income, / lnis E∂ ∂ , and higher 

order derivatives, 2 2/ ln
i

s E∂ ∂ , etc. Now from (19) we get that  
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and higher order derivatives are zero.  

These derivatives have to be evaluated when ( , ).x E t b=  The simplest way to do this is to 

adopt the normalisation that ln ( ) 0u b = . This is always possible by appropriate choice of 

utility units. It now follows also from (18) that  
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ln ( , ) ln ( ( )) ln ( ( ))
1 ( ( )) ln ( )

b b
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p
        (24) 

Here and from now on, I write ( )bA p  rather than just ( )A p , to mark the fact that this 

normalisation changes the function ( )A p .
21

  

We can now use these results to evaluate the derivatives in (23) at the point 

( , ), ( )x E t b t= =p p :  
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using (24) and  
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Substituting these results into (7) we obtain  

                                                
21

  It is simplest to see this is in the log-linear PIGLOG case when ( ) 0λ =p . Add and 

subtract ( ( )) ( )B t u bp  from the right hand side of the expenditure function (16) to obtain:  

 
( , ) ln ( ( )) ( ( )) ln ( ) ( ( ))[ln ( ) ln ( )]

ln ( ( )) ( ( )) ln ( )b b

x t t A t B t u b B t u t u b

A t B t u t
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p p p
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putting ln ( ( )) ln ( ( ) ( ( )) ln ( )bA t A t B t u b= +p p p  and ln ( ) ln ( ) ln ( ).bu t u t u b= −  Note that 

ln ( ) 0bu b =  and that ( ( ))bA tp  is homogeneous of degree one in prices. So the new 

expenditure function with rebased utility has the same properties as the original one.  
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and this Taylor series expansion is not an approximation but is exact for the generalised 

PIGLOG with the specification of (20) and (21).  

As a further step towards putting the demand system into a form which can be estimated 

in practice, it is helpful to use (22) and (24) to write the equations for the observed shares at 

time t as:  
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Here we have used the fact that, from (24), ( , ) ( ( ))bx b b A b= p .  

One further result involving the interpretation of the Konüs price index is also needed. 

From the definition of the Konüs price index, equation (2), and equation (24), we find that for 

the generalised PIGLOG system:  
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i.e. ( , , ) ( ( )) / ( ( ))K

b b
P t b b A t A b= p p . Substituting this into the share equations (26),  
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The compensated shares can now be written as 
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where use has been made of (24) and (27). The notation can be simplified by putting  
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after which (28) and (29) (or (24)) become  
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 ( , ) ( , ) ( , ) ( , ), 1,2,..., ; 0,1,...,i i i is t b s t t z t b y t b i N t Tβ λ= − − = =    (31) 

The QAIDS specification of the real income terms, as in (30), will now be used to show 

how the Konüs price index can be estimated in practice, when there are too few observations 

to estimate all the parameters of the expenditure function.
22

  

 

3.3 The estimation procedure 

 

In order to implement the procedure outlined above for estimating the Konüs price index, we 

need to estimate only the N iβ  parameters and the N iλ  parameters of equations (28); in both 

cases only 1N −  of these are independent because these coefficients each sum to zero across 

the products. That is, 2( 1)N −  parameters in total need to be estimated or just two per share 

equation. These parameters determine the consumer’s response to changes in real expenditure. 

We do not need to estimate the much more numerous parameters which determine the 

response to price changes. This is a huge reduction in the difficulty of the task.  

Even if we need only the expenditure response parameters, how can we estimate these 

while avoiding estimating all the other parameters of the system at the same time? After all, if 

we just estimate the share equations with the price variables omitted then our estimates of the 

expenditure response will undoubtedly be biased, since relative prices and real expenditures 

are likely to be correlated over time (and across countries). The answer is to collapse the 

1N −  relative prices in the system into a smaller number of variables using principal 

components.
23

 We can collapse the relative prices into (say) M principal components, where 

1M N< −  is to be chosen empirically.  

                                                
22

  Lewbel and Pendakur (2009) have recently proposed a new demand system, the Exact 

Affine Stone Index (EASI) system. This has all the advantages of the generalised PIGLOG 

(and of the QAIDS) while allowing Engel curves to be still more flexible, e.g. polynomials of 

cubic or higher order. In principle the method developed here could be applied to the EASI 

system as well. However, I have not been able to develop tractable expressions for the 

derivatives of the share equations with respect to log expenditure (the ikη ). From the point of 

view of the present paper, the EASI system suffers from the disadvantage that exact 

aggregation does not hold. This does not matter when the system is fitted to individual data 

but does when fitted to aggregate data: see section 4 for discussion of aggregation over 

consumers who may differ in income and in other ways.  
23

  See Johnson and Wichern (2002) for a textbook exposition of principal components.  
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The share equations (30) can now be written in a form suitable for econometric estimation 

by replacing the individual price variables by principal components and adding an error term:  

 

 1
( , ) ( ) ( , ) ( , ) ( ),

1,..., ; 0,...,

Mb

i i ik k i i ik
s t t PC t z t b y t b t

i N t T

α θ β λ ε
=

= + + + +

= =

∑     (32) 

Here b

i
α  is the base-year-dependent constant term ( 1b

ii
α =∑ ); ( )kPC t  is the kth principal 

component of the 1N −  relative prices; the ikθ  are coefficients subject to the cross-equation 

restrictions 0,iki
kθ = ∀∑ ; ( )i tε  is the error term. The presence of the principal components 

in equation (32) means that the estimates of the coefficients on z and y need not be biased as 

they would be if prices were simply omitted.
24

  

We have now reduced the problem to estimating a system of 1N −  independent 

equations, each of which contains only 3M +  coefficients — the ikθ  (M in number), 

, and b

i i iα β λ .
25

 The success of this strategy will depend on whether the variation in relative 

prices can be captured by a fairly small number of principal components — small that is in 

relation to the number of time series observations, 1T + . This is obviously an empirical 

matter. At one extreme, if there is little or no correlation between the prices over time (or 

space), then the use of principal components yields no benefit. At the other extreme, suppose 

that the demand system is specified in terms of the logs of prices and that all relative prices 

are just loglinear time trends, though the growth rate varies between prices. The evolution of 

relative prices can be written as:  

1ln[ ( ) / ( )] , 2,...,j jp t p t t j Nµ= =  

where the jµ  are the growth rates and the first product is taken as the numeraire. Assume too 

that the matrix ( )A p  takes the AIDS form:  

 
0ln ( ) ln (1/ 2) ln ln , 1, 0,i i ij i j i ij ij ij jii i j

i i j

A p p pα α γ α γ γ γ γ= + + = = = =∑ ∑∑ ∑ ∑ ∑p  

                                                
24

  The empirical flexibility of equation (32) could be increased by adding cubic and higher 

order terms in ( , )z t b . (The coefficients on these additional terms must be constrained to sum 

to zero across products). The implied expenditure function could not now be written down in 

closed form but the share equations extended in this way could be regarded as polynomial 

approximations to the exact ones. However, in the presence of cubic and higher order terms 

the property of exact aggregation would no longer hold, making it hard to interpret the results 

in terms of individual welfare. See the next section for more on aggregation.  
25

  This is not quite true since all the iβ  appear in each equation via the denominator of y. 

We can handle this by an iterative procedure: see below.  



24 

 

Then in the ith share equation (28) the price effects are  

11 2

2

ln ( ( ))
ln ( ) ln[ ( ) / ( )]

ln

, say

N N

i ij j i ij jj j
i

N

i ij j i ij

A t
p t p t p t

p

t t

α γ α γ

α γ µ α δ

= =

=

∂
= + = +

∂

 = + = +
 

∑ ∑

∑

p

 

(Here we have used the fact that 0ijj
γ =∑ ). In this case the effect of changing relative 

prices is captured entirely by a time trend, with a different coefficient in each share equation 

(subject to the cross-equation restriction that 0ii
δ =∑ ). So just one principal component 

captures the whole variation in relative prices (i.e. in this case 1M = ). This is an extreme 

case and in practice we must expect that more than one principal component will be required 

to capture the variation in relative prices.
26

  

 The specification of the principal components depends on the demand system chosen. If 

we chose the AIDS (and QAIDS) form for ( )A p , then it would be natural to estimate the 

principal components in terms of log relative prices, e.g. 1ln( / ), 2,...,jp p j N= , taking the 

first product as the numeraire. Alternatively, we might use the normalised quadratic of 

Diewert and Wales (1988), in which case the principal components would be estimated in 

terms of relative prices (not in logs).  

 In estimating equations (32) econometrically, it is straightforward to impose the adding-

up and homogeneity restrictions on the coefficients; homogeneity is imposed by using 

relative prices and adding-up is imposed by cross-section restrictions on the coefficients 

(these restrictions are automatically imposed by OLS though the latter is not necessarily the 

best method). But there is one loss from using principal components: we can no longer 

impose the symmetry restrictions.
27

  

 Equations (32) are nonlinear in the parameters of interest, since to measure both z and y 

correctly it is necessary to know the Konüs price index, the object of the whole exercise; in 

                                                
26

  In Oulton (2008) I applied the method to 70 products covering the whole of the U.K.’s 

Retail Prices Index over 1974-2004. I found that six principal components were sufficient to 

capture 97.8% of the variation in the 69 log relative prices.  
27

  For example, suppose that 3N =  and that the special case of all relative prices changing 

at constant rates applies. Then, dropping the third equation, taking the first product as the 

numeraire, and imposing all the constraints, the relationship between the iδ  and the ijγ  is as 

follows: 1 12 2 11 12 3( )δ γ µ γ γ µ= − + , 2 22 2 12 22 3( )δ γ µ γ γ µ= − + . These relationships imply no 

further restrictions on 1δ  and 2δ . So we cannot test whether 12 21γ γ= .  
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addition, to measure y we also need to know all the iβ  and iλ . The solution is an iterative 

process, similar to the one described in the previous section. Here the unknown parameters, 

the 
iβ  and 

iλ , are estimated jointly with the compensated shares and the Konüs price index. 

The system consists of equations (25), (32), and the equation for the Konüs price index, either 

equation (9) if we use a compensated Törnqvist to approximate the Konüs or equation (12) if 

we use a compensated Fisher. The iterative process for some particular choice of the base 

period is as follows:  

 

1. Obtain initial estimates of the Konüs price index ( , , )K
P t b b  and of the iβ  and iλ

 

coefficients. An initial estimate of ( , , )K
P t b b  can be obtained from equation (9) or 

equation (12) by using actual instead of compensated shares (i.e. replace ( , )is t b  by 

( , )is t t  in the formulas). And for an initial estimate of the iβ , set 0,i iβ = ∀ .  

2. Derive estimates of ( , ) ln[ ( , ) / ( , )]K
z t b x t t P t b=  and of 2( , ) [ ( , )] / ( )k

kk
y t b z t b p t

β= ∏ , 

using the latest estimates of ( , , )K
P t b b  and of the 

iβ . Using these new estimates of z  

and y , estimate equation (32) econometrically, to obtain new estimates of the iβ  and 

the 
iλ .  

3. Using the new estimates of the iβ  and iλ , estimate the compensated shares from 

equation (25). Then use the compensated shares to derive a new estimate of the Konüs 

price index ( , , )K
P t b b  from equation (9) or equation (12).  

4. If the estimate of the Konüs price index has changed by less than a preset 

convergence condition, stop. If not, go back to step 2.
28

 

The algorithm can be rerun to generate estimates for any other base year. Alternatively, the 

estimates of the iβ  and iλ  produced by the first run can be plugged into the simpler 

algorithm of section 3.1 to generate Konüs price indices for any other base year.  

 

                                                
28

  This is the same as the Iterated Linear Least squares Estimator (ILLE) proposed by 

Blundell and Robin (1999). They prove that the limit values of these parameter estimates are 

consistent.  
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3.4 Comparisons across space 

 

The analysis carries over unchanged to the problem of estimating a cost of living index and 

hence the standard of living across countries at a point in time.
29

 The solution for the Konüs 

price index given by equations (7) and (5) can be applied directly in the cross-country context. 

Initially we must imagine a continuum of countries indexed by t just as in section 3 we 

imagined a continuum of time periods. Then we consider discrete approximations; i.e. as 

before equation (5) can be approximated by either (9) or (12).  

One problem which is often said to arise in the cross-country but not the inter-temporal 

context is that, unlike time, countries have no natural order. In the present case this objection 

does not apply. Here the natural order for countries is the ranking by real income (or real 

expenditure) per capita. Adopting this order minimises the gap between country t and country 

1t − and so should improve the discrete approximation. It is true that the rank order is not 

known for certain in advance, since the whole point of the exercise is to estimate the true 

standard of living. But in practice the rank order is very similar whatever the deflator 

employed (Oulton, 2012). Alternatively, the ordering of countries could be determined by the 

minimum-spanning-tree method suggested by and implemented on cross-country data by Hill 

(1999). Then the links in the chain would be selected so as to minimise the (compensated) 

Laspeyres-Paasche spread.
30

  

 

 

4. Extensions to the basic analysis  

 

The preceding section 3 offered a solution to the problem of estimating a true cost-of-living 

index over time for a single representative consumer. I now consider two extensions to the 

analysis. First, I consider the effect of relaxing the assumption of a single representative 

                                                
29

  See Hill (1997) for a survey of methods of making international comparisons; a general 

overview was provided by Balk (2009). Caves et al. (1982) have applied chained superlative 

index numbers to cross-country comparisons. Hill (2004) also estimates a chain superlative 

index but employs the minimum-spanning tree approach to find the best links in the chain. 

Neary (2004) employed the World Bank’s 1980 PPPs for 60 countries and 11 commodity 

groups to estimate a QAIDS; he then derived a measure of real GDP per capita for the 60 

countries. The World Bank’s current methodology for deriving PPPs at the aggregate level is 

set out in World Bank (2008).  
30

  Hill (2004) uses a different criterion, namely minimising a dissimilarity index suggested 

by Diewert (2002), but this seems less appropriate in the present context.  
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consumer. I now assume that the aggregate data is generated by heterogeneous consumers 

who differ in income. If the degree of inequality were constant the preceding analysis could 

stand unchanged. This may or may not be a reasonable approximation in a time series context 

over a few decades. But in a cross-country context the assumption is certainly problematic: 

countries differ widely in the extent of inequality (Anand and Segal, 2008). So we need to 

extend our framework to encompass this. Second, I consider aggregation over different types 

of household.  

 

4.1 Aggregation over rich and poor consumers 

 

Let the population be composed of G groups. The groups are assumed to be of equal size (e.g. 

percentiles, deciles or quintiles), with the first group being the poorest and the Gth group the 

richest. The fraction of households in each group is then 1/ G . Let gx  be mean expenditure 

per household in the gth group. Within a group, each household’s expenditure is the same, 

namely the group mean. The share of product i in the expenditure of the gth group, igs ,is then  

 
i ig

ig

g

p q
s

x
=  

where igq  is the quantity per capita of the ith product purchased by each member of the gth 

group. The share of the ith product in aggregate expenditure is therefore  

 
1

1 1

g G

i ig g G g Gg g i igi i
i g igg g

g

p q x p qp q
s w s

x Gx Gx x

=

= ==

= =

 
= = = = 

  

∑
∑ ∑        (33) 

where gw  is the share of the gth group in aggregate expenditure:  

 
1

, 1
g Gg

g gg

x
w w

Gx

=

=
= =∑                 (34) 

 We assume that preferences have the Ernest Hemingway property: the rich are different 

from the poor but only because the rich have more money.
31

 So the parameters of the 

expenditure function are the same for all households. All consumers are assumed to face the 

same prices. So from (22) and adopting the QAIDS formulation, the share of the ith product 

in expenditure by the gth group is:  

                                                
31

  The well-known (though apparently fictional dialogue (Clark, 2009)) runs as follows. 

Fitzgerald: “The rich are different from us, Ernest”. Hemingway: “Yes, Scott, they have more 

money than we do”.  
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Using (33), the aggregate share equations are weighted averages of the underlying equations 

for each group:  
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  (35) 

The difference between this and our previous equation (22) is that instead of the log of 

aggregate expenditure per capita, 
1

ln ln /
g G

gg
x x G

=

=
 =
 ∑ , appearing on the right hand side, 

we now have the share-weighted average of log expenditure per capita in each group, 

1
ln

g G

g gg
w x

=

=∑ ; and instead of 2(ln )x , we now have 2

1
(ln )

g G

g gg
w x

=

=∑ . The relationship 

between 
1

ln
g G

g gg
w x

=

=∑  and ln x  is, from (34),  

 
1 1 1

ln ln( ) ln ln ln
g G g G g G

g g g g g gg g g
w x w w Gx w w G x

= = =

= = =
= = + +∑ ∑ ∑  

The first term on the right hand side, lng gg
w w∑ , is the negative of entropy (ignoring an 

unimportant scale constant); it was suggested as a measure of inequality by Theil (1967, 

chapter 4). Define 
1

ln
g G

g gg
I w w

=

=
= −∑  as entropy and define also the related inequality 

statistic 2

1
(ln )

g G

g gg
J w w

=

=
=∑ . Substituting these into (35), we find after some manipulation 

(see section A.3 of the Appendix) that  
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      (36) 

 

where we have set 1 lnW G I= −  and 2

2 2 ln (ln )W J I G G= − + . In the case of a perfectly 

equal distribution (when 1/gw G= ), note that lnI G= , 2(ln )J G= , and 1 2 0W W= = , so that 

(36) then reduces back down to the original QAIDS formulation, equation (22). Compared to 
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(22), there are two additional variables in (36), 1W  and 2W , though no additional parameters. 

These additional variables may help to explain changes in shares, to the extent that inequality 

varies either over time or across countries. Note too that in the simpler AIDS case (i.e. when 

all the iλ  are zero), equation (36) simplifies to  

ln ( )
(ln ) ln

ln ( )

b
i i

i b

A x
s G I

p A
β
  ∂  

= + − +  
∂    

p

p
          (37) 

which contains just one additional variable (I).
32

  

 By analogy with equation (32), equation (36) can be written in a form suitable for 

econometric estimation as:  

 1 21
( , ) ( ) ( , ) ( , ) ( ),

1,..., ; 0,...,
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i i ik k i i ik
s t t PC t w t b w t b t

i N t T

α θ β λ ε
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∑     (38) 

where 
1w  and 

2w  are the expenditure variables corrected for income distribution effects:  
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 The upshot is that the QAIDS can be parsimoniously extended to capture the effect of 

income inequality. The additional empirical requirement is fairly modest: we need to know 

the shares of different groups in aggregate expenditure, at a reasonable level of detail.  

 

4.2 Aggregation over different household types 

 

Suppose there are a set of H characteristics that influence demand, in addition to income and 

prices. These could include household characteristics such as number of children, average age, 

and educational level, and also environmental characteristics such as climate. Now the share 

equations of the QAIDS for the gth income group could be written as:  
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32

  The role of Theil’s inequality measure, entropy (I), was discussed in Deaton and 

Muellbauer (1980b) chapter 6, section 6.2. They derived a result equivalent to (37).  
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where hgK  is the level of the hth characteristic in the gth group; I assume that each household 

in the gth group has the same level of each of the hgK  as all the other households in that 

group (this entails no loss of generality if there is only one household in each group). The inθ  

coefficients must satisfy the adding-up restrictions:  

 
1

0, 1,2,...,
i H

ini
n Hθ

=

=
= =∑  

(At some cost to parsimony, the model could be extended by interacting the characteristic 

variables with income). Again, underlying preferences are assumed to be the same but 

people’s situations differ for various reasons, in the spirit of Stigler and Becker (1977):
33

 at 

the same incomes and prices, people in cold climates buy more winter clothes. We can 

aggregate equation (39) over the income groups to obtain the same result as (36), but with an 

additional term:  

 
1

h H

ih hh
Kθ

=

=
+∑  

where 
1

g G

h g hgg
K w K

=

=
=∑ . Now hK  is a weighted average of the level of the hth characteristic 

in a particular country (time period). The only difficulty from an empirical point of view is 

that it is an income-weighted, not a population-weighted, average. So for example if the rich 

have fewer children than the poor nowadays, then using the mean number of children per 

household as a measure would be a misspecification when estimating share equations from 

aggregate data.
34

  

 

 

5. Cost functions: estimating input-biased scale economies and technical 

change 

 

In this section I consider the parallel problem of estimating an input price index and technical 

change when the cost function is not homothetic. Now both economies of scale and technical 

                                                
33

  This approach seems likely to be more fruitful in the present context than assuming that 

tastes may differ; the latter approach is taken by van Veelen and van der Weide (2008).  
34  In Oulton (2012) I have applied the algorithm to estimate PPPs for 141 countries using 

100 products within the category of household consumption. This study allowed for both 

differences in income within countries and for a large number of household and country 

characteristics.  
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change may be input-biased. I assume that the typical firm is a price taker in input markets 

and wishes to minimise costs. We can write the cost function in general as:  

 ( , , )x C Y t= p                    (40) 

Here output (Y) plays the role of utility in the expenditure function. While formally this 

makes no difference, there is a big difference empirically since output is objectively and 

directly measurable (at least in principle) while utility is only indirectly measurable. The 

presence of time (t) as an indicator of technical change in the cost function also has no 

counterpart in the theory of demand.
35

  

By analogy with equation (18), we can use a generalised PIGLOG formulation:  

 
( ) ln

ln ln ( , , ) ln ( ) ln ( )
1 ( ) ln

Y t

B Y
x C Y t A Y t t

Y
β µ µ

λ
= = + + + +

−

p
p p p

p
     (41) 

where Y is output, 
i ii

x p q=∑  is total expenditure on the inputs 
iq , and as before ( ) 0B >p is 

homogeneous of degree one in prices and ( ) 0λ ≥p  is homogeneous of degree zero in prices. 

There are two new elements here. First, the parameter Yβ measures overall economies of 

scale. When there are no input biases, i.e. ( ) 1B =p  and ( ) 0λ =p , then 0Yβ =  implies 

constant returns to scale and 0Yβ <  implies increasing returns. In this case the cost function 

is homothetic but not necessarily homogeneous of degree one in output. Second, the last two 

terms on the right hand side of (41) measure technical change. Neutral technical change is 

measured by the parameter tµ  ( 0tµ <  implies that technical change is positive); input-biased 

technical change is measured by the function ( )µ p . By analogy with ( )λ p , ( )µ p  could be 

specified as  

                                                
35

  The parallel between cost and expenditure functions would be complete if individuals 

were able to learn over time how to make better use of goods and services in order to 

generate more utility. In some cases there is very suggestive evidence of a social learning 

process. The death toll before the Second World War on the roads in Great Britain peaked in 

1938 when 6,648 people were killed, of whom 3,046 were pedestrians. By 2006 the annual 

death toll had fallen to 3,172, of whom 673 were pedestrians, and the death rate per capita 

had dropped to a third of the earlier level, even though the number of vehicles per capita 

increased to more than 8 times its 1938 level. (Source: Annual Abstract of Statistics, 2008 

and 1938-1948 editions). Of course, many things changed over this period but one of them 

was surely that the habit of looking both ways before stepping into the road became more 

deeply engrained. The decline in smoking rates as evidence about the health risks has 

accumulated might also be cited. An alternative justification for making time an argument of 

the expenditure function is preference change. But even though it is still possible to measure 

changes in the cost of living (Balk, 1989) when preferences change, it is difficult to see how 

changes in the standard of living can be measured.  
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Under this specification, and with ( )B p  and ( )λ p  defined as earlier for the generalised 

PIGLOG (see (20) and (21)), the share equations are now given by:
36
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The parameters 
iβ  and 

iλ  now measure input bias in scale economies. If they are all zero 

there is no bias and the degree of returns to scale is measured just by Yβ . The parameter iµ  

measures the bias in technical change against input i: 0iµ <  would imply that technical 

change is biased in favour of input i.  

If our goal is to estimate the degree of economies of scale and the rate of technical change, 

the parameters of interest in the cost function can be estimated by a simpler method than in 

the case of the expenditure function. We can consider equation (43) as a regression equation 

by adding an error term, in the same way as we did to obtain equation (32) above for the 

expenditure shares. After replacing the price variables in (43) by principal components, we 

can then estimate the iβ , iλ  and iµ  by a similar iterative process to the one set out in section 

3, while imposing the appropriate cross-equation restrictions. Next, the degree of scale 

economies and the rate of neutral technical change can be estimated by differentiating the 

cost function (41) totally with respect to time, using (42), applying Shephard’s Lemma, and 

rearranging:  
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       (44)  

Everything on the left hand side is now measurable and the only unknowns are the 

coefficients tµ  and Yβ  on the right hand side. So (44) can be considered as a regression 

equation and used to estimate these remaining unknowns.
37

  

                                                
36

  These are cost shares, not revenue shares. In the presence of economies of scale there 

may be monopoly power, so profit is above the competitive level. I assume that the 

competitive rate of return to capital is known so that it is possible to calculate competitive 

rental prices for capital inputs: see Oulton (2007) for alternative ways of doing this.  
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The compensated shares, holding output constant at its level in period b, are  
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setting ln ( ) 0Y b = . So the relationship between the actual and the compensated shares is  
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and the compensated shares can be used to construct a Konüs index of input prices.  

 The analysis of inequality in section 4 can also be applied to the cost functions of firms, if 

the size distribution varies over time or across countries. Entropy (I) and the related statistic J 

would now appear in the share equations (43), just as they do in (36).  

 Finally, an interesting question is whether anything useful can be concluded when output 

is not in fact measurable. In many private services, the inputs may be measured fairly easily 

but we don’t know how to measure real output very well. This suggests that we might follow 

the same strategy as in the case of consumer demand. In that case, we eliminated unmeasured 

utility from the right hand side of the share equations by substituting from the expenditure 

function. The shares thus became functions of deflated expenditure (see equations (19)). 

Could the same strategy work for cost functions? Unfortunately not. If we rearrange the cost 

function (41) we obtain:  

 [ ]
( ) ln

ln ln ( )
1 ( ) ln ( )

Y t

B Y x
Y t t

Y A
β µ µ

λ

 
= − + + −  

p
p

p p
 

If we substitute this expression into the share equations (43) we are still left with the problem 

of estimating the unknown coefficients tµ  and Yβ  and we still need a measure of real output. 

The root of the problem is that real output is necessarily cardinal while utility is only ordinal. 

And for utility there is no counterpart to technical change.
38

  

                                                                                                                                                  
37

  Actually, overall technical change is not separately identifiable from biased technical 

change. Any non-zero estimate for tµ  can be absorbed into the iµ  by relaxing the constraint 

that 0ii
µ =∑ .  

38
  In special cases the problem is soluble. Mellander (1992) shows that we can deduce real 

output in the case where input demand is homothetic, there are decreasing returns to scale, 

and the mark-up of price over marginal cost is constant. Then the ratio of the value of output 

(assumed observable) to the value of total cost is an indicator of the degree of returns to scale.  
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6. Conclusions 

 

An algorithm which generates Konüs price indices when demand is not homothetic has now 

been presented. We have shown that it can be applied in both time series and cross-section. It 

is not dependent on the assumption of a representative consumer but can be extended to the 

case where income levels and other characteristics differ between consumers. The same 

algorithm can be applied to the parallel problem of estimating a true index of a producer’s 

input prices and of TFP in the presence of input-biased economies of scale. The algorithm 

involves some econometric estimation but uses exactly the same price and quantity data as 

are required for conventional index numbers. The advantage of the algorithm is that it does 

not require the estimation of a complete system of consumer (or producer) demand, but only 

the consumer’s responses to expenditure changes. So it can be applied at a very disaggregated 

level. And no restrictive assumptions about preferences (such as separability) are needed.  

 It is now time to consider some limitations of the analysis and some unanswered 

questions. If we are trying to measure the standard of living, then our maintained hypothesis 

must be that tastes are identical. Otherwise the relative living standards of (say) Bangladeshi 

peasants and American investment bankers must be regarded as simply incommensurable. 

But the assumption of identical tastes might be considered overly strong. Is an intermediate 

position possible, in which tastes are identical at some comparatively high level, but might 

differ at a lower one? For example, the taste for hot, non-alcoholic beverages might be 

universal even though (at identical incomes and prices) some people prefer tea and others 

coffee.  

 A related and unanswered question in the theory of demand and production is, at what 

level of aggregation is the analysis supposed to apply? It is hard to believe that there exists a 

stable structure of preferences (common to all time periods and all countries) at a very 

detailed level, such as individual brands of breakfast cereal. Equally, it is not obvious that 

“food” is the right level either, since food items range from necessities (bread) to luxuries 

(caviar). In practice, the level of aggregation is often chosen on pragmatic grounds, to obtain 

sufficient observations to estimate the parameters of interest. Resolution of these issues must 

await further research.  
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Appendix 

 

A.1 Flexible functional forms: the homothetic case  

 

A flexible functional form is one which provides a second order approximation to any 

expenditure function (or utility function), or to any cost function (or production function), 

which is acceptable to economic theory.
39

 Note that these are local not global properties; a 

good approximation at the point in question does not guarantee a good approximation at some 

other point.  

The flexible functional forms which Diewert (1976) studied were what he called 

quadratic means of order s, given by:  

 
1/

/2 /2

1 1
( ; ) , , , 0

s
i N j N s s

ij i j ij jii j
A s b p p b b i j s

= =

= =
 = = ∀ ≠ >
 ∑ ∑p        (A1) 

where ( ; )A sp  is assumed concave and positive. For concreteness, in this section I interpret 

equation (A1) as referring to the consumer’s problem of choosing amongst N products 

subject to a budget constraint but it could equally well refer to the producer’s problem of 

allocating a given expenditure amongst N inputs. Under this interpretation, ( ; )A sp  is the cost 

per unit of utility and equation (A1) is part of an expenditure function of the following form:  

 ( , ) ( ( ); ) ( )x t b A t s u b= p                 (A2) 

where 
i ii

x p q=∑  is total expenditure, iq  is the quantity purchased of the ith product, and 

( , )x t b  is the minimum expenditure required to reach the utility level prevailing at time b 

when the consumer faces the prices of time t. Note that equation (A2) implies that demand is 

homothetic: all expenditure elasticities are equal to one.
40

  

The Konüs price index for period t relative to period b, with utility that of period b, which 

corresponds to this expenditure function is then  

 ( , , ) ( , ) / ( , ) ( ( ); ) / ( ( ); )KP t b b x t b x b b A t s A b s= = p p            

                                                
39

  A second order approximation is one for which the approximating function and the 

function approximated have the same value at a particular point, the first derivatives of the 

two functions are equal at that same point, and the second derivatives are also equal at that 

point. 
40

  This follows from Shephard’s Lemma which implies that the budget shares are given by 

ln / ln ix p∂ ∂ . These shares are independent of the level of utility and hence of expenditure 

when the expenditure function has the form of equation (A2). So a doubling of expenditure 

with all prices held constant doubles the quantity purchased of every product.  
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which is independent of the utility level. If the consumer maximises utility subject to the 

budget constraint ( , ) ( ) ( )i ii
x t t p t q t=∑ , then Diewert showed that the Konüs price index for 

period t relative to period b which corresponds to (A1) is given by:  
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        (A3) 

Note that base period (period b) expenditure shares appear in the numerator and current 

period (period t) ones in the denominator.  

 The importance of this result is that the formula for the price index requires knowledge 

only of prices and quantities (or equivalently, prices and budget shares). It does not require 

knowledge of any of the parameters of ( ; )A sp . The latter are very numerous and there may 

be insufficient observations available to estimate them econometrically. But Diewert’s result 

tells us that we don’t need to.  

 The quadratic mean of order s also includes the translog as a special case when s = 0; the 

Törnqvist is the corresponding superlative index. This can be seen by taking the limit as 

0s →  and applying de l’Hôpital’s Rule. In the case where 2s =  the corresponding 

superlative index is the Fisher (Diewert, 1976). The Fisher and the Törnqvist are the forms 

most commonly used in empirical economics. The Fisher index is widely used by national 

statistical agencies, including those of the U.S.  

 As stated above, the quadratic mean of order s is only guaranteed to be a good 

approximation locally. As we move farther away from the point on which the approximation 

is based, it may cease to be a good one. The solution now is chaining, since the index we seek 

to approximate, equation (5) or equivalently (6), has continuously changing weights. This 

means that we continue to believe that a quadratic mean of order s, with s assumed known, 

describes the data well, but the actual parameters can change over time. Eg, at time t the 

particular form given by (A1) may apply, but at some other time r a related but different form 

may be a better approximation to consumer behaviour:  
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= =
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where each 
ij

b′  may differ from the corresponding 
ij

b . So in measuring the change in the 

Konüs price index between time t and 1t +  equation (A1) may apply, while from time r to 
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time 1r +  equation (A4) may be better. Underlying preferences may be unchanged (the true 

utility function is unchanged), it’s just that at some periods equation (A1) may be a good 

approximation while at other periods equation (A4) may be better. We don’t need to know 

whether this is the case or not, because both sets of parameters are captured by the superlative 

index of equation (A3). Hence chaining increases the flexibility of flexible functional forms 

by allowing parameters to change over time and this is consistent with preferences remaining 

unchanged.
41

  

 Hill (2006) has recently cast doubt on the optimistic conclusion that superlative indices 

solve the index number problem in the homothetic case. He argues that we have no good 

reason for picking one value of s over another and the value of the price index may be 

sensitive to the choice of s. He proves that as s is increased the value of the index approaches 

the geometric mean of the smallest and largest price relatives. Hence the index can be 

sensitive to outliers. He demonstrates this point using actual time series data for the US and 

cross country data for 43 countries and finds wide variations depending on the value of s. The 

spread between the largest and smallest values of a given index (for different values of s) 

often lies outside the Laspeyres-Paasche spread. However, there is not much variation in the 

indices as s increases from 0 (translog) to 2 (Fisher).  

 The optimistic conclusion can however be defended:  

1. All Hill’s comparisons are bilateral. He does not employ chain indices. But as argued 

above, chaining should substantially reduce the empirical uncertainty: the smaller the 

change between adjacent years (or countries), the closer will be the values of all 

superlative indices, i.e. they become increasingly insensitive to the choice of s.  

2. If we adopt the economic approach (to which Hill is not necessarily committed), then 

the use of superlative indices requires that demand be homothetic. However 

unrealistic this is as a description of demand, it is the maintained hypothesis. But then 

theory implies that the true index must lie between the Paasche and the Laspeyres 

(Konüs, 1939, Deaton and Muellbauer, 1980b, chapter 7). So to be consistent with the 

maintained hypothesis, we should reject any value for the order s which produces a 

result outside the Laspeyres-Paasche spread. This again reduces the empirical 

uncertainty about the value of s.
42

  

                                                
41

  Diewert (1976) was well aware of this point: see his footnote 16.  
42

  For Hill's time series data, the maximum (absolute) Laspeyres-Paasche spread was 5% 

and the average one was 1.2%. For his cross-section data, the spread was much larger: 
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A.2 Proofs of propositions in section 3  

Proof of Proposition 1: The differences between the compensated and the actual shares 

depend on (a) the difference in real expenditure between the base period and the current 

period and (b) the consumer’s response to real expenditure changes. 

 

From (1) and (3), the budget shares are functions of utility, but from (1) utility is a positive, 

monotonic function of expenditure when prices are held constant. So the budget shares are 

functions of expenditure, and therefore also of log expenditure, when prices are held constant. 

We now need the following assumption:  

Assumption The function relating the budget shares of any product to log expenditure 

is entire: that is, it is infinitely differentiable (smooth) and its Taylor series converges to the 

value of the function at every point in the (economically relevant) domain.  

In this case the economically relevant domain is 0x > . (Consumers with zero 

expenditure will not be observed; and though we may observe inactive firms we do not need 

to model their input choices). Note that polynomials, the exponential function, and the sine 

and cosine functions are entire. And sums, products and compositions of entire functions are 

also entire.
43

  

Now consider the share function for the ith product, equation (3), at the point ( , )is t t  and 

expand it in a Taylor series around the point ( , )is t b : that is, hold prices constant at their 

levels at time t and vary expenditure (utility) from its level in the base period (period b), to 

obtain  

                                                                                                                                                  

173.5% and 33.7% respectively. (I subtract 1 from his figures since he gives the ratio of 

Paasche to Laspeyres).  
43

  The logarithmic function is not entire since the Taylor series for ln x  only converges 

within the range 1 2x< ≤ . This might cause a problem if budget shares were a function of x 

rather than of ln x . But a specification in terms of ln x  is more reasonable economically.  
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Note that ln ( , ) ln ( , ) ln[ ( , ) / ( , ]E t t E t b E t t E t b− =  is the log of the ratio of the expenditure 

needed to achieve the utility level of period t to the expenditure needed to achieve the level of 

period b, both evaluated at the prices of period t. In fact  
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where ( , )x v v  is actual money expenditure at time v and we have used the definition of the 

Konüs price index in equation (2).  

 Now substitute (A6) into (A5) and solve for the compensated shares ( , )is t b :  
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where  
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Q.E.D.  

 

Convergence of the algorithm for finding compensated shares 

 

We seek conditions under which the iterative process described informally in section 3 

converges to the correct solution for the compensated shares. I assume that a Kth order 
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polynomial in deflated expenditure is an adequate representation of consumer demand. Write 

the system (7) in discrete time and adopt a discrete approximation for the Konüs price index 

(e.g. chained Fisher or chained Törnqvist: see section 3). Substitute the Konüs price index out 

of (7) using the discrete version of equation (5). Then the system can be written in matrix 

terms as  

 ( , ) ( ( , )), 0,1,...,tt b f t b t T= =s s               (A9) 

where ( , ) [ ( , )]it b s t b=s  is an N x 1 vector of the compensated shares at time t. The form of 

the functions ( )tf ⋅  can be seen from equations (7), with the Taylor series truncated after K 

terms. Then the solution we seek is a fixed point of the system (A9). A common way to find 

the fixed point is by functional iteration:  

 1( , ) ( ( , )), 0,1,...,m m

tt b f t b t T
+ = =s s            (A10) 

Here the superscript denotes the iteration number and the initial guess is 1 1( , ) ( , )t b t t=s s . On 

certain assumptions this process can be shown to converge. What follows is based on Judd 

(1998, chapter 5). His Theorem 5.4.1 states that if ( )tf ⋅  is a differentiable contraction map on 

a closed, convex and bounded set D, then (1) the fixed point problem has a unique solution 

and (2) the sequence defined in (A10) converges to this solution. Note that this is a sufficient 

but not a necessary condition. Here D is the set { }|0 1, 1i i ii
s s s≤ ≤ =∑ . For ( )tf ⋅  to be a 

differentiable contraction map requires that the values of each element of the Jacobian of 

( )tf ⋅  at all points in the set D be less than one in absolute value.  

 The Jacobian of ( )tf ⋅  is  
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and the requirement for ( )tf ⋅  to be a contraction map is that  

 1, ,
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f
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s t b
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If the compensated Törnqvist form is employed as the discrete version of the Konüs, then the 

elements of the Jacobian contain terms like 1( / 2) ln( ( )i jp tη ∆ , 2( / 2 2!) ln( ( )i jp tη ⋅ ∆ ,…, 

( / 2 !) ln( ( )ik jK p tη ⋅ ∆  and sums and products of these terms. If the ln ( )jp t∆  are sufficiently 

small, which depends in part on the size of the time interval (or the gap between countries), 

then the requirement of (A11) can be satisfied, since we expect the absolute values of the 

1 2, ,...,i i iKη η η  to be less than one. But even if it is not satisfied a weaker requirement for 

convergence may suffice. Theorem 5.4.2 of Judd (1998, page 166)) states that if the Jacobian 

at a fixed point is a contraction when viewed as a linear map in nR , then iterating ( )tf ⋅  will 

converge if the initial guess is good. This theorem requires ( )tf ⋅  to be Lipschitz at the fixed 

point, which is the case for the functions considered here, and that the spectral radius of the 

Jacobian matrix at the fixed point be less than one.  

 

An explicit solution of equations (4) and (7) when the Engel curves are log-linear 

 

In this case 2 ... 0i iKη η= =  and the system of equations (A7) in discrete time can be written as  
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Set 1t b= +  so we have  

 1

( 1, 1) / ( , )
( 1, ) ( 1, 1) ln 1,...,

( 1, )
i i i K

x b b x b b
s b b s b b i N

P b b
η

 + +
+ = + + − = 

+ 
 

We also assume that the Konüs price index takes the compensated Törnqvist form of equation 

(9):  
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Substitute this into the preceding equation to obtain:  
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In matrix notation this becomes 
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where [ ]is=s , 1 1[ ]iη=η , ln ( 1) [ln ( 1) ln ( )]i ib p b p b∆ + = + −p , and ( 1, )b b+K  are 1N ×  

column vectors; note that all components of ( 1, )b b+K  are assumed known. Solving for 

( 1, )b b+s ,  
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s I η p K  

Everything on the right hand side is known so this yields an explicit solution for the 

compensated shares at time 1b + . Proceeding in a similar way we can get an explicit solution 

for the compensated shares at time 2b + , and so on. Similarly, we can work backwards from 

b to find the compensated shares at time 1b − , 2b − , etc.  

 

Proof of Proposition 2: the Konüs price index lies between the compensated Laspeyres and 

the compensated Paasche indices  

 

The well-known inequalities derived by Konüs (1939) (see also Deaton and Muellbauer 

(1980), chapter 7) relate the actual Laspeyres and Paasche price indices to the Konüs index. 

Here I derive analogous inequalities relating compensated Laspeyres and Paasche indices to 

the Konüs.  

 Define ( , )iq t b  as the quantity of the ith good which would be demanded at prices ( )tp  

when utility is held constant at the level ( )u b ; implicitly ( , )iq t b  has already been defined by 

the compensated shares since ( , ) ( ) ( , ) / ( ) ( , ).i i i i ii
s t b p t q t b p t q t b= ∑  As in the text, the 

compensated Laspeyres ( )CL
P  and Paasche ( )CP

P  price indices for year (country) t relative 

to year (country) r, with base year (country) b, are defined as follows:  
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The corresponding Konüs price index for year (country) t relative to year (country) r, with 

utility held constant at that of base year (country) b, is defined as:  
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Since the cost function gives the minimum expenditure required to attain ( )u b  at a given 

set of prices, we have  
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and by definition of the expenditure function,  
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It follows that  
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(A12) 

By the cost-minimising property again,  
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and by definition of the expenditure function,  
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So we have  
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(A13) 

Putting (A12) and (A13) together:  
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p
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        (A14) 

Q.E.D.  
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Remark 1 If 1r t= − , Proposition 2 states that each link in a chained Konüs price index lies 

within (or on the boundary of) the spread between a chained compensated Laspeyres and a 

chained compensated Paasche:  

 ( , 1, ) ( , 1, ) ( , 1, )CL K CPP t t b P t t b P t t b− ≥ − ≥ −  

If 1r t≠ − , Proposition 2 states that the Konüs price index lies within (or on the boundary of) 

the spread between a bilateral compensated Laspeyres and a bilateral compensated Paasche. 

This is the case when all indices are measured with year (country) r as both the base and the 

reference, in which case we have:  

 ( , , ) ( , , ) ( , , )CL K CPP t r r P t r r P t r r≥ ≥             (A15) 

It is also the case if instead year (country) t is chosen as the base, with r still the reference, 

when  

 ( , , ) ( , , ) ( , , )CL K CPP t r t P t r t P t r t≥ ≥             (A16) 

 

Remark 2 Since the compensated Fisher index ( )CFP  is the geometric mean of the 

compensated Laspeyres and the compensated Paasche, like the Konüs it must always lie 

between the compensated Laspeyres and the compensated Paasche:  

 ( , , ) ( , , ) ( , , )CL CF CPP t r b P t r b P t r b≥ ≥              (A17) 

 

 

A.3 Aggregating over unequal incomes in the generalised PIGLOG 

 

As given in equation (35), repeated here for convenience, the share of product i in aggregate 

expenditure is a weighted average of the shares of the various income groups:  

 

1 1

2 2

1 1

1

ln ( )
ln ln ( )

ln

(ln ) 2ln ( ) ln [ln ( )]
k

g G g Gb
i g ig i g g i bg g

i

g G g Gi
g g b g g bk N g g

kk

A
s w s w x A

p

w x A w x A
p

β

β β

λ

= =

= =

= =

= = =

=

∂
= = + −

∂

 + − +
 

∑ ∑

∑ ∑
∏

p
p

p p

  (A18) 

From (34),  

 
1 1 1

ln ln( ) ln ln ln
g G g G g G

g g g g g gg g g
w x w w Gx w w G x

= = =

= = =
= = + +∑ ∑ ∑     (A19) 

Also, from (34) again,  
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Plugging these results into (A18):  
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Therefore  
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where we have set 
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=∑ . Now after defining 

1 lnW G I= −  and 2

2 2 ln (ln )W J I G G= − +  we obtain equation (36) of the main text.  
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