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Abstract 
Although economists have long been aware of Jensen's inequality, many econometric applications 
have neglected an important implication of it: the standard practice of interpreting the parameters of 
log-linearized models estimated by ordinary least squares as elasticities can be highly misleading in 
the presence of heteroskedasticity. This paper explains why this problem arises and proposes an 
appropriate estimator. Our criticism to conventional practices and the solution we propose extends to 
a broad range of economic applications where the equation under study is log-linearized. We develop 
the argument using one particular illustration, the gravity equation for trade, and apply the proposed 
technique to provide new estimates of this equation. We find significant differences between 
estimates obtained with the proposed estimator and those obtained with the traditional method. These 
discrepancies persist even when the gravity equation takes into account multilateral resistance terms 
or fixed effects 
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1. Introduction

Economists have long been aware that Jensen’s inequality implies that E(ln y) 6= lnE(y),
that is, the expected value of the logarithm of a random variable is different from the

logarithm of its expected value. This basic fact, however, has been neglected in many

econometric applications. Indeed, one important implication of Jensen’s inequality is that

the standard practice of interpreting the parameters of log-linearized models estimated

by ordinary least squares (OLS) as elasticities can be highly misleading in the presence

of heteroskedasticity.

Although many authors have addressed the problem of obtaining consistent estimates

of the conditional mean of the dependent variable when the model is estimated in the

log-linear form (see, for example, Goldberger, 1968; Manning and Mullahy, 2001), we

were unable to find any reference in the literature to the potential bias of the elasticities

estimated using the log-linear model.

In this paper we use the gravity equation for trade as a particular illustration of how

the bias arises and propose an appropriate estimator. We argue that the gravity equation,

and, more generally, constant-elasticity models, should be estimated in their multiplica-

tive form and propose a simple pseudo-maximum likelihood (PML) estimation technique.

Besides being consistent in the presence of heteroskedasticity, this method also provides

a natural way to deal with zero values of the dependent variable.

Using Monte Carlo simulations, we compare the performance of our estimator with

that of OLS (in the log-linear specification). The results are striking. In the presence

of heteroskedasticity, estimates obtained using log-linearized models are severely biased,

distorting the interpretation of the model. These biases might be critical for the com-

parative assessment of competing economic theories, as well as for the evaluation of the

effects of different policies. In contrast, our method is robust to the different patterns of

heteroskedasticity considered in the simulations.

We next use the proposed method to provide new estimates of the gravity equation in

cross sectional data. Using standard tests, we show that heteroskedasticity is indeed a
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severe problem, both in the traditional gravity equation introduced by Tinbergen (1962),

and in a gravity equation that takes into account multilateral resistance terms or fixed

effects, as suggested by Anderson and van Wincoop (2003). We then compare the esti-

mates obtained with the proposed PML estimator with those generated by OLS in the

log-linear specification, using both the traditional and the fixed-effects gravity equations.

Our estimation method paints a very different picture of the determinants of inter-

national trade. In the traditional gravity equation, the coefficients on GDP are not, as

generally estimated, close to one. Instead, they are significantly smaller, which might

help reconcile the gravity equation with the observation that the trade-to-GDP ratio de-

creases with total GDP (or, in other words, that smaller countries tend to be more open

to international trade). In addition, OLS greatly exaggerates the roles of colonial ties,

geographical proximity, and bilateral trade agreements.

Using the Anderson-van Wincoop (2003) gravity equation, we find that OLS yields sig-

nificantly larger effects for geographical distance. The estimated elasticity obtained from

the log-linearized equation is almost twice as large as that predicted by PML. OLS also

predicts a large role for common colonial ties, implying that sharing a common colonial

history practically doubles bilateral trade. In contrast, the proposed PML estimator leads

to a statistically and economically insignificant effect.

The general message is that, even controlling for fixed effects, the presence of het-

eroskedasticity can generate strikingly different estimates when the gravity equation is

log-linearized, rather than estimated in levels. In other words, Jensen’s inequality is

quantitatively and qualitatively important in the estimation of gravity equations. This

suggests that inferences drawn on log-linearized regressions can produce misleading con-

clusions.

Despite the focus on the gravity equation, our criticism to the conventional practice

and the solution we propose extends to a broad range of economic applications where

the equations under study are log-linearized, or, more generally, transformed by a non-

linear function. A short list of examples includes the estimation of Mincerian equations
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for wages, production functions, and Euler equations, which are typically estimated in

logarithms.

The remainder of the paper is organized as follows. Section 2 studies the econometric

problems raised by the estimation of gravity equations. Section 3 considers constant-

elasticity models in general; it introduces the pseudo-maximum likelihood estimator and

specification tests to check the adequacy of the proposed estimator. Section 4 presents

the Monte Carlo simulations. Section 5 provides new estimates of both the traditional

and the Anderson-van Wincoop gravity equation. The results are compared with those

generated by OLS, non-linear least squares and Tobit estimations. Section 6 contains

concluding remarks.

2. Gravity-Defying Trade

2.1 The Traditional Gravity Equation

The pioneering work of Jan Tinbergen (1962) initiated a vast theoretical and empirical

literature on the gravity equation for trade. Theories based on different foundations for

trade, including endowment and technological differences, increasing returns to scale, and

“Armington” demands, all predict a gravity relationship for trade flows analogous to New-

ton’s “Law of Universal Gravitation.”1 In its simplest form, the gravity equation for trade

1See, for example, Anderson (1979), Helpman and Krugman (1985), Bergstrand (1985), Davis (1995),

Deardoff (1998), and Anderson and van Wincoop (2003). A feature common to these models is that

they all assume complete specialization: each good is produced in only one country. However, Haveman

and Hummels (2001), Feenstra, Markusen, and Rose (2000), and Eaton and Kortum (2001) derive the

gravity equation without relying on complete specialization. Examples of empirical studies framed on

the gravity equation include the evaluation of trade protection (e.g., Harrigan, 1993), regional trade

agreements (e.g., Frankel, Stein, and Wei, 1995; Frankel, 1997), exchange rate variability (e.g., Frankel

and Wei, 1993; Eichengreen and Irwin, 1995), and currency unions (e.g., Rose, 2000; Frankel and Rose,

2002; and Tenreyro and Barro, 2002). See also the various studies on “border-effects” influencing the

patterns of intranational and international trade, including McCallum (1995), and Anderson and van

Wincoop (2003), among others.
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states that the trade flow from country i to country j, denoted by Tij, is proportional to

the product of the two countries’ GDPs, denoted by Yi and Yj, and inversely proportional

to their distance, Dij, broadly construed to include all factors that might create trade

resistance. That is,

Tij = α0Y
α1
i Y α2

j Dα3
ij , (1)

where α0, α1, α2, and α3 are parameters to be estimated.

The analogy between trade and the physical force of gravity, however, clashes with the

observation that there is no set of parameters for which equation (1) will hold exactly for

an arbitrary set of observations. To account for deviations from the theory, stochastic

versions of the equation are used in empirical studies. Typically, the stochastic version of

the gravity equation has the form

Tij = α0Y
α1
i Y α2

j Dα3
ij ηij, (2)

where ηij is an error term with E(ηij|Yi, Yj, Dij) = 1, assumed to be statistically indepen-

dent of the regressors, leading to

E(Tij|Yi, Yj, Dij) = α0Y
α1
i Y α2

j Dα3
ij .

There is a long tradition in the trade literature of log-linearizing (2) and estimating the

parameters of interest by least squares using the equation

ln (Tij) = ln (α0) + α1 ln (Yi) + α2 ln (Yj) + α3 ln (Dij) + ln
¡
ηij
¢
. (3)

The validity of this procedure depends critically on the assumption that ηij, and therefore

ln
¡
ηij
¢
, are statistically independent of the regressors. To see why this is so, notice that

the expected value of the logarithm of a random variable depends both on its mean and

on the higher-order moments of the distribution. Hence, for example, if the variance of

the error term ηij in equation (2) depends on Yi, Yj, or Dij, the expected value of ln
¡
ηij
¢

will also depend on the regressors, violating the condition for consistency of OLS.2

2As an illustration, consider the case in which ηij follows a log-normal distribution, with

E(ηij |Yi, Yj ,Dij) = 1 and variance σ2ij = f(Yi, Yj ,Dij). The error term in the log-linearized repre-

sentation will then follow a normal distribution, with E
£
ln
¡
ηij
¢ |Yi, Yj ,Dij

¤
= −12 ln(1 + σ2ij), which is

also a function of the covariates.
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In the cases studied in Section 5 we find overwhelming evidence that the error terms

in the usual log-linear specification of the gravity equation are heteroskedastic, which

violates the assumption that ln
¡
ηij
¢
is statistically independent of the regressors and

suggests that this estimation method leads to inconsistent estimates of the elasticities of

interest.

A related problem with the analogy between Newtonian gravity and trade is that grav-

itational force can be very small, but never zero, whereas trade between several pairs of

countries is literally zero. In many cases, these zeros occur simply because some pairs

of countries did not trade in a given period. For example, it would not be surprising

to find that Tajikistan and Togo did not trade in a certain year.3 These zero observa-

tions pose no problem at all for the estimation of gravity equations in their multiplicative

form. In contrast, the existence of observations for which the dependent variable is zero

creates an additional problem for the use of the log-linear form of the gravity equation.

Several methods have been developed to deal with this problem (see Frankel, 1997, for a

description of the various procedures). The approach followed by the large majority of

empirical studies is simply to drop the pairs with zero trade from the dataset and estimate

the log-linear form by OLS. Rather than throwing away the observations with Tij = 0,

some authors estimate the model using Tij + 1 as the dependent variable or use a Tobit

estimator. However, these procedures will generally lead to inconsistent estimators of β.

The severity of these inconsistencies will depend on the particular characteristics of the

sample and model used, but there is no reason to believe that they will be negligible.

Zeroes may also be the result of rounding errors.4 If trade is measured in thousands of

dollars, it is possible that for pairs of countries for which bilateral trade did not reach a

minimum value, say $500, the value of trade is registered as zero. If these rounded-down

3The absence of trade between small and distant countries might be explained, among other factors,

by large variable costs (e.g., bricks are too costly to transport) or large fixed costs (e.g., information

on foreign markets). At the aggregate level, these costs can be best proxied by the various measures of

distance and size entering the gravity equation.
4Trade data can suffer from many other forms of errors, as described in Feenstra, Lipsey, and Bowen

(1997).
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observations were partially compensated by rounded-up ones, the overall effect of these

errors would be relatively minor. However, the rounding down is more likely to occur for

small or distant countries and, therefore, the probability of rounding down will depend

on the value of the covariates, leading to the inconsistency of the estimators. Finally, the

zeros can just be missing observations which are wrongly recorded as zero. This problem

is more likely to occur when small countries are considered and, again, measurement error

will depend on the covariates, leading to inconsistency.

2.2 The Anderson-van Wincoop Gravity Equation

Anderson and van Wincoop (2003) argue that the traditional gravity equation is not

correctly specified as it does not take into account multilateral resistance terms. One

of the solutions for this problem that is suggested by these authors is to augment the

traditional gravity equation with exporter and importer fixed effects, leading to

Tij = α0Y
α1
i Y α2

j Dα3
ij e

θieθj , (4)

where α0, α1, α2, and α3 are the elasticities to be estimated and θi and θj indicate the

exporter and importer fixed effects.

Their model also yields the prediction that α1 = α2 = 1, which leads to the unit-

income-elasticity model

Tij = α0YiYjD
α3
ij e

θieθj

whose stochastic version has the form

E(Tij|Yi, Yj, Dij, θi, θj) = α0YiYjD
α3
ij e

θieθj . (5)

As before, log-linearization of (5) raises the problem of how to treat zero-value obser-

vations. Moreover, given that (5) is a multiplicative model, it is also subject to the biases

caused by log-linearization in the presence of heteroskedasticity. Naturally, the presence

of the individual effects may reduce the severity of this problem, but whether or not that

happens is an empirical issue.
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In our empirical analysis we provide estimates for both the traditional and the Anderson-

van Wincoop gravity equations using alternative estimation methods. We show that, in

practice, heteroskedasticity is quantitatively and qualitatively important in the gravity

equation, even when controlling for fixed effects. Hence, we recommend to estimate the

augmented gravity equation in levels, using the proposed PML estimator, which also

adequately deals with the zero observations.

3. Constant-Elasticity Models

Despite their immense popularity, there are still important econometric flaws in empirical

studies involving gravity equations. These flaws are not exclusive of this literature, and

extend to many areas where constant-elasticity models are used. This section examines

how the deterministic multiplicative models suggested by economic theory can be used in

empirical studies.

In their non-stochastic form, the relationship between the multiplicative constant-

elasticity model and its log-linear additive formulation is trivial. The problem, of course,

is that economic relations do not hold with the accuracy of the physical laws. All that

can be expected is that they hold on average. Indeed, here we interpret economic models

like the gravity equation as the expected value of the variable of interest, y ≥ 0, for

a given value of the explanatory variables, x (see Goldberger, 1991, p. 5). That is, if

economic theory suggests that y and x are linked by a constant-elasticity model of the

form yi = exp (xiβ), the function exp (xiβ) is interpreted as the conditional expectation

of yi given x, denoted E [yi|x].5 For example, using the notation in the previous sec-

5Notice that if exp (xiβ) is interpreted as describing the conditional median of yi (or other conditional

quantile) rather than the conditional expectation, estimates of the elasticities of interest can be obtained

estimating the log-linear model using the appropriate quantile regression estimator (Koenker and Bassett,

1978). However, interpreting exp (xiβ) as a conditional median is problematic when yi has a large mass

of zero observations, like in trade data. Indeed, in this case the conditional median of yi will be a

discontinuous function of the regressors, which is generally not compatible with the standard economic

theory.
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tion, the multiplicative gravity relationship can be written as the exponential function

exp [ln (α0) + α1 ln (Yi) + α2 ln (Yj) + α3 ln (Dij)], which is interpreted as the conditional

expectation E(Tij|Yi, Yj,Dij).

Since the relation yi = exp (xiβ) holds on average, but not for each i, there is an error

term associated with each observation, which is defined as εi = yi −E [yi|x].6 Therefore,
the stochastic model can be formulated as

yi = exp (xiβ) + εi, (6)

with yi ≥ 0 and E [εi|x] = 0.
As we mentioned before, the standard practice of log-linearizing equation (6) and esti-

mating β by OLS is inappropriate for a number of reasons. First of all, yi can be zero,

in which case log-linearization is unfeasible. Second, even if all observations of yi are

strictly positive, the expected value of the log-linearized error will in general depend on

the covariates and hence OLS will be inconsistent. To see the point more clearly, notice

that equation (6) can be expressed as

yi = exp (xiβ) ηi,

with ηi = 1+ εi/ exp (xiβ) and E [ηi|x] = 1. Assuming for the moment that yi is positive,
the model can be made linear in the parameters by taking logarithms of both sides of the

equation, leading to

ln (yi) = xiβ + ln (ηi) . (7)

To obtain a consistent estimator of the slope parameters in equation (6) estimating

(7) by OLS, it is necessary that E [ ln (ηi)|x] does not depend on xi.7 Since ηi = 1 +

εi/ exp (xiβ), this condition is met only if εi can be written as εi = exp (xiβ) νi, where νi

is a random variable statistically independent of xi. In this case, ηi = νi and therefore is

statistically independent of xi, implying that E [ ln (ηi)|x] is constant. Thus, the log-linear
6Whether the error term enters additively or multiplicatively is irrelevant for our purposes, as explained

below.
7Consistent estimation of the intercept would also require E [ ln (ηi)|x] = 0.
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representation of the constant-elasticity model is only useful as a device to estimate the

parameters of interest under very specific conditions on the error term.

When ηi is statistically independent of xi, the conditional variance of yi (and εi) is

proportional to exp (2xiβ). Although economic theory generally does not provide any in-

formation on the variance of εi, we can infer some of its properties from the characteristics

of the data. Because yi is non-negative, when E [yi|x] approaches zero, the probability
of yi being positive must also approach zero. This implies that V [yi|x], the conditional
variance of yi, tends to vanish as E [yi|x] passes to zero.8 On the other hand, when the
expected value y is far away from its lower bound, it is possible to observe large devia-

tions from the conditional mean in either direction, leading to greater dispersion. Thus,

in practice, εi will generally be heteroskedastic and its variance will depend on exp (xiβ),

but there is no reason to assume that V [yi|x] is proportional to exp (2xiβ). Therefore, in
general, regressing ln (yi) on xi by OLS will lead to inconsistent estimates of β.

It may be surprising that the pattern of heteroskedasticity and, indeed, the form of

all higher-order moments of the conditional distribution of the error term can affect the

consistency of an estimator, rather than just its efficiency. The reason is that the non-

linear transformation of the dependent variable in equation (7) changes the properties of

the error term in a non-trivial way since the conditional expectation of ln (ηi) depends on

the shape of the conditional distribution of ηi. Hence, unless very strong restrictions are

imposed on the form of this distribution, it is not possible to recover information about the

conditional expectation of yi from the conditional mean of ln (yi) simply because ln (ηi) is

correlated with the regressors. Nevertheless, estimating (7) by OLS will produce consistent

estimates of the parameters of E [ ln (yi)|x] as long as E [ ln (yi)|x] is a linear function of
8In the case of trade data, when E [yi|x] is close to its lower bound (i.e., for pairs of small and distant

countries), it is unlikely that large values of trade are observed since they cannot be offset by equally

large deviations in the opposite direction simply because trade cannot be negative. Therefore, for these

observations, dispersion around the mean tends to be small.
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the regressors.9 The problem is that these parameters may not permit identification of

the parameters of E [yi|x].
In short, even assuming that all observations on yi are positive, it is not advisable to

estimate β from the log-linear model. Instead, the non-linear model has to be estimated.

3.1 Estimation

Although most empirical studies use the log-linear form of the constant-elasticity model,

some authors (see Frankel and Wei, 1993, for an example in the international trade liter-

ature) have estimated multiplicative models using non-linear least squares (NLS), which

is an asymptotically valid estimator for (6). However, the NLS estimator can be very

inefficient in this context as it ignores the heteroskedasticity that, as discussed before, is

characteristic of this type of model.

The NLS estimator of β is defined by

β̂ = argmin
b

nX
i=1

[yi − exp (xib)]2 ,

which implies the following set of first order conditions:

nX
i=1

h
yi − exp

³
xiβ̂
´i
exp

³
xiβ̂
´
xi = 0. (8)

These equations give more weight to observations where exp
³
xiβ̂
´
is large because that

is where the curvature of the conditional expectation is more pronounced. However, these

are generally also the observations with larger variance, which implies that NLS gives more

weight to noisier observations. Thus, this estimator may be very inefficient, depending

heavily on a small number of observations.

If the form of V [yi|x] was known, this problem could be eliminated using a weighted-

NLS estimator. However, in practice, all we know about V [yi|x] is that, in general, it
goes to zero as E [yi|x] passes to zero. Therefore, an optimal weighted-NLS estimator

9When E [ ln (yi)|x] is not a linear function of the regressors, estimating (7) by OLS will produce
consistent estimates of the parameters of the best linear approximation to E [ ln (yi)|x] (see Goldberger,
1991, p. 53).
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cannot be used without further information on the distribution of the errors. In principle,

this problem can be tackled by estimating the multiplicative model using a consistent

estimator, and then obtaining the appropriate weights estimating the skedastic function

non-parametrically, as suggested by Delgado (1992) and Delgado and Kniesner (1997).

However, this nonparametric generalized least squares estimator is rather cumbersome

to implement, especially if the model has a large number of regressors. Moreover, the

choice of the first round estimator is an open question as the NLS estimator may be

a poor starting point due to its considerable inefficiency. Therefore, the nonparametric

generalized least squares estimator is not appropriate to use as a work-horse for routine

estimation of multiplicative models.10 Indeed, what is needed is an estimator that is

consistent and reasonably efficient under a wide range of heteroskedasticity patterns and

is also simple to implement.

A possible way of obtaining an estimator that is more efficient than the standard NLS

without the need to use nonparametric regression is to follow McCullagh and Nelder

(1989) and estimate the parameters of interest using a pseudo-maximum likelihood es-

timator based on some assumption on the functional form of V [yi|x].11 Among the

many possible specifications, the hypothesis that the conditional variance is propor-

tional to the conditional mean is particularly appealing. Indeed, under this assumption

E [yi|x] = exp (xiβ) ∝ V [yi|x], and β can be estimated by solving the following set of first
order conditions:

nX
i=1

h
yi − exp

³
xiβ̃
´i

xi = 0. (9)

Comparing equations (8) and (9), it is clear that, unlike the NLS estimator, which is

a PML estimator obtained assuming that V [yi|x] is constant, the PML estimator based
on (9) gives the same weight to all observations, rather than emphasizing those for which

10A nonparametric generalized least squares estimator can also be used to estimate linear models in

presence of heteroskedasticity of unknown form (Robinson, 1987). However, despite having been proposed

more than 15 years ago, this estimator has never been adopted as a standard tool by empirical researchers,

who generally prefer the simplicity of the inefficient OLS, with an appropriate covariance matrix.
11See also Manning and Mullahy (2001). A related estimator is proposed by Papke and Wooldridge

(1996) for the estimation of models for fractional data.
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exp (xiβ) is large. This is because, under the assumption that E [yi|x] ∝ V [yi|x], all
observations have the same information on the parameters of interest as the additional

information on the curvature of the conditional mean coming from observations with large

exp (xiβ) is offset by their larger variance. Of course, this estimator may not be optimal,

but without further information on the pattern of heteroskedasticity, it seems natural to

give the same weight to all observations.12 Even if E [yi|x] is not proportional to V [yi|x],
the PML estimator based on (9) is likely to be more efficient than the NLS estimator

when the heteroskedasticity increases with the conditional mean.

The estimator defined by (9) is numerically equal to the Poisson pseudo-maximum

likelihood (PPML) estimator which is often used for count data.13 The form of (9) makes

clear that all that is needed for this estimator to be consistent is the correct specification

of the conditional mean, i.e., E [yi|x] = exp (xiβ). Therefore, the data do not have to

be Poisson at all and, what is more important, yi does not even have to be an integer,

for the estimator based on the Poisson likelihood function to be consistent. This is the

well-known pseudo-maximum likelihood result first noted by Gourieroux, Monfort and

Trognon (1984).

The implementation of the PPML estimator is straightforward since there are standard

econometric programs with commands that permit the estimation of Poisson regression,

even when the dependent variables are not integers. Because the assumption V [yi|x] ∝
E [yi|x] is unlikely to hold, this estimator does not fully account for the heteroskedasticity
in the model and all inference has to be based on an Eicker-White (Eicker, 1963; and

White, 1980) robust covariance matrix estimator.

Of course, if it was known that V [yi|x] is a function of higher powers of E [yi|x], a more
efficient estimator could be obtained down-weighing even more the observations with

large conditional mean. An example of such estimator is the gamma pseudo-maximum

likelihood estimator studied by Manning and Mullahy (2001) which, like the log-linearized

12The same strategy is implicitly used by Papke and Wooldridge (1996) in their pseudo-maximum

estimator for fractional data models.
13See Cameron and Trivedi (1998) and Winkelmann (2003) for more details on the Poisson regression

and on more general models for count data.
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model, assumes that V [yi|x] is proportional to E [yi|x]2. The first order conditions for
the gamma PML estimator are given by

nX
i=1

h
yi − exp

³
xiβ̆
´i
exp

³
−xiβ̆

´
xi = 0.

In the case of trade data, however, this estimator may have an important drawback.

Trade data for larger countries (as gauged by GDP per capita) tend to be of higher quality

(see Frankel and Wei, 1993, and Frankel 1997); hence, models assuming that V [yi|x] is
a function of higher powers of E [yi|x] might give excessive weight to the observations
that are more prone to measurement errors.14 Therefore, the Poisson regression emerges

as a reasonable compromise, giving less weight to the observations with larger variance

than the standard NLS estimator, without giving too much weight to observations more

prone to contamination by measurement error and less informative about the curvature

of E [yi|x].

3.2 Testing

In this section we consider tests for the particular pattern of heteroskedasticity assumed

by PML estimators, focusing on the PPML estimator. Although PML estimators are

consistent even when the variance function is misspecified, the researcher can use these

tests to check if a different PML estimator would be more appropriate and to decide

whether or not the use of a nonparametric estimator of the variance is warranted.

Manning and Mullahy (2001) suggested that if

V [yi|x] = λ0E [yi|x]λ1 , (10)

the choice of the appropriate PML estimator can be based on a Park-type regression

(Park, 1966). Their approach is based on the idea that if (10) holds and an initial

14Frankel and Wei (1993) and Frankel (1997) suggest that larger countries should be given more weight

in the estimation of gravity equations. This would be appropriate if the errors in the model were just

the result of measurement errors in the dependent variable. However, if it is accepted that the gravity

equation does not hold exactly, measurement errors account for only part of the dispersion of trade data

around the gravity equation.
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consistent estimate of E [yi|x] is available, then λ1 can be consistently estimated using

an appropriate auxiliary regression. Specifically, following Park (1966), Manning and

Mullahy (2001) suggest that λ1 can be estimated using the auxiliary model

ln (yi − y̌i)
2 = ln (λ0) + λ1 ln (y̌i) + υi, (11)

where y̌i denotes the estimated value of E [yi|x]. Unfortunately, as the discussion in the
previous sections should have made clear, this approach based on the log-linearization

of (10) is valid only under very restrictive conditions on the conditional distribution of

yi. However, it is easy to see that this procedure is valid when the constant-elasticity

model can be consistently estimated in the log-linear form. Therefore, using (11) a test

for H0 : λ1 = 2 based on a non-robust covariance estimator provides a check for the

adequacy of the estimator based on the log-linear model.

A more robust alternative, which is mentioned by Manning and Mullahy (2001) in a

footnote, is to estimate λ1 from

(yi − y̌i)
2 = λ0 (y̌i)

λ1 + ξi, (12)

using an appropriate PML estimator. The approach based on (12) is asymptotically

valid and inference about λ1 can be based on the usual Eicker-White robust covariance

matrix estimator. For example, the hypothesis that V [yi|x] is proportional to E [yi|x] is
accepted if the appropriate confidence interval for λ1 contains 1. However, if the purpose

is to test the adequacy of a particular value of λ1, a slightly simpler method based on the

Gauss-Newton regression (see Davidson and MacKinnon, 1993) is available.

Specifically, to check the adequacy of the PPML for which λ1 = 1 and y̌i = exp
³
xiβ̃
´
,

(12) can be expanded in a Taylor series around λ1 = 1, leading to

(yi − y̌i)
2 = λ0y̌i + λ0 (λ1 − 1) ln (y̌i) y̌i + ξi.

Now, the hypothesis that V [yi|x] ∝ E [yi|x] can be tested against (10) simply by checking
the significance of the parameter λ0 (λ1 − 1). Because the error term ξi is unlikely to be

homoskedastic, the estimation of the Gauss-Newton regression should be performed using
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weighted least squares. Assuming that in (12) the variance is also proportional to the

mean, the appropriate weights are given by exp
³
−xiβ̃

´
and therefore the test can be

performed by estimating

(yi − y̌i)
2±py̌i = λ0

p
y̌i + λ0 (λ1 − 1) ln (y̌i)

p
y̌i + ξ∗i (13)

by OLS and testing the statistical significance of λ0 (λ1 − 1) using a Eicker-White robust
covariance matrix estimator.15

In the next section, a small simulation is used to study the Gauss-Newton regression test

for the hypothesis that V [yi|x] ∝ E [yi|x], as well as the Park-type test for the hypothesis
that the constant-elasticity model can be consistently estimated in the log-linear form.

4. A simulation study

This section reports the results of a small simulation study designed to assess the per-

formance of different methods to estimate constant-elasticity models in the presence of

heteroskedasticity and rounding errors. As a by-product, we also obtain some evidence

on the finite sample performance of the specification tests presented above. These exper-

iments are centered around the following multiplicative model:

E [yi|x] = µ (xiβ) = exp (β0 + β1x1i + β2x2i) , i = 1, . . . , 1000. (14)

Since, in practice, regression models often include a mixture of continuous and dummy

variables, we replicate this feature in our experiments: x1i is drawn from a standard

normal and x2 is a binary dummy variable that equals 1 with a probability of 0.4.16 The

15Notice that to test V [yi|x] ∝ E [yi|x] against alternatives of the form V [yi|x] = λ0 exp (xi (β + λ))

the appropriate auxiliary regression would be

(yi − y̌i)
2
.p

y̌i = λ0
p
y̌i + λ0λxi

p
y̌i + ξ∗i ,

and the test could be performed by checking the joint significance of the elements of λ0λ. If the model

includes a constant, one of the regressores in the auxiliary regression is redundant and should be dropped.
16For example, in gravity equations, continuous variables (which are all strictly positive) include income

and geographical distance. In equation (14), x1 can be interpreted as (the logarithm of) one of these
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two covariates are independent and a new set of observations of all variables is generated

in each replication using β0 = 0, β1 = β2 = 1. Data on y are generated as

yi = µ (xiβ) ηi, (15)

where ηi is a log-normal random variable with mean 1 and variance σ
2
i . As noted before,

the slope parameters in (14) can be estimated using the log-linear form of the model only

when σ2i is constant. That is, when V [yi|x] is proportional to µ (xiβ)2.
In these experiments we analyzed PML estimators of the multiplicative model and

different estimators of the log-linearized model. The consistent PML estimators studied

were: NLS, gamma pseudo-maximum likelihood (GPML) and the PPML. Besides these

estimators, we also considered the standard OLS estimator of the log-linear model, OLS;

the OLS estimator for the model were the dependent variable is yi + 1, OLS (y + 1); a

truncated OLS estimators to be discussed below; and the threshold Tobit of Eaton and

Tamura (1994), ET-Tobit.17

To assess the performance of the estimators under different patterns of heteroskedas-

ticity, we considered the four following specifications of σ2i :

Case 1: σ2i = µ (xiβ)
−2; V [yi|x] = 1;

Case 2: σ2i = µ (xiβ)
−1; V [yi|x] = µ (xiβ);

Case 3: σ2i = 1; V [yi|x] = µ (xiβ)
2;

Case 4: σ2i = exp (x2i) + µ (xiβ)
−1; V [yi|x] = µ (xiβ) + exp (x2i)µ (xiβ)

2.

In Case 1 the variance of εi is constant, implying that the NLS estimator is optimal.

Although, as argued before, this case is unrealistic for models of bilateral trade, it is

included in the simulations for completeness. In Case 2, the conditional variance of

yi equals its conditional mean, as in the Poisson distribution. The pseudo-likelihood

variables. Examples of binary variables include dummies for free-trade agreements, common language,

colonial ties, contiguity and access to land.
17We also studied the performance of other variants of the Tobit model, finding very poor results.
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estimator based on the Poisson distribution is optimal in this situation. Case 3 is the

special case in which OLS estimation of the log-linear model is consistent for the slope

parameters of (14). Moreover, in this case the log-linear model not only corrects the

heteroskedasticity in the data, but, because ηi is log-normal, it is also the maximum

likelihood estimator. The GPML is the optimal PML estimator in this case, but it should

be outperformed by the true maximum likelihood estimator. Finally, Case 4 is the only

one in which the conditional variance does not depend exclusively on the mean. The

variance is a quadratic function of the mean, as in Case 3, but it is not proportional to

the square of the mean.

We carried out two sets of experiments. The first set was aimed at studying the per-

formance of the estimators of the multiplicative and the log-linear models under different

patterns of heteroskedasticity. In order to study the effect of the truncation on the per-

formance of the OLS, and given that this data generating mechanism does not produce

observations with yi = 0, the log-linear model was also estimated using only the obser-

vations for which yi > 0.5, OLS (y > 0.5). This reduces the sample size by about 25%

to 35%, depending on the pattern of heteroskedasticity. The estimation of the thresh-

old Tobit was also performed using this dependent variable. Notice that, although the

dependent variable has to cross a threshold to be observable, the truncation mechanism

used here is not equal to the one assumed by Eaton and Tamura (1994). Therefore, in

all these experiments the ET-Tobit will be slightly misspecified and the results presented

here should be viewed as a check of its robustness to this problem.

The second set of experiments studied the estimators’ performance in the presence of

rounding errors in the dependent variable. For that purpose, a new random variable was

generated rounding to the nearest integer the values of yi obtained in the first set of sim-

ulations. This procedure mimics the rounding errors in official statistics and generates

a large number of zeros, a typical feature of trade data. Because the model considered

here generates a large proportion of observations close to zero, rounding down is much

more frequent than rounding up. As the probability of rounding up or down depends on

the covariates, this procedure will necessarily bias the estimates, as discussed before. The
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purpose of the study is to gauge the magnitude of these biases. Naturally, the log-linear

model cannot be estimated in these conditions because the dependent variable equals zero

for some observations. Following what is the usual practice in these circumstances, the

truncated OLS estimation of the log-linear model was performed dropping the observa-

tions for which the dependent variable equals zero. Notice that the observations discarded

with this procedure are exactly the same that are discarded by OLS (y > 0.5) in the first

set of experiments. Therefore, this estimator is also denoted OLS (y > 0.5).

The results of the two sets of experiments are summarized in Table 1, which displays the

biases and standard errors of the different estimators of β obtained with 10, 000 replicas

of the simulation procedure described above. Only results for β1 and β2 are presented as

these are generally the parameters of interest.

As expected, OLS only performs well in Case 3. In all other cases this estimator is clearly

inadequate because, despite its low dispersion, it is often badly biased. Moreover, the sign

and magnitude of the bias vary considerably. Therefore, even when the dependent variable

is strictly positive, estimation of constant elasticity models using the log-linearized model

cannot generally be recommended. As for the modifications of the log-linearized model

designed to deal with the zeros of the dependent variable, ET-Tobit, OLS (y + 1) and OLS

(y > 0.5), their performance is also very disappointing. These results clearly emphasize

the need to use adequate methods to deal with the zeros in the data and raise serious

doubts about the validity of the results obtained using the traditional estimators based on

the log-linear model. Overall, except under very special circumstances, estimation based

on the log-linear model cannot be recommended.

One remarkable result of this set of experiments is the extremely poor performance of

the NLS estimator. Indeed, when the heteroskedasticity is more severe (cases 3 and 4)

this estimator, despite being consistent, leads to very poor results because of its erratic

behavior.18 Therefore, it is clear that the loss of efficiency caused by some of the forms

of heteroskedasticity considered in these experiments is strong enough to render this

estimator useless in practice.

18Manning and Mullahy (2001) report similar results.
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Table 1: Simulation results under different forms of heteroskedasticity
Results without rounding error Results with rounding error

β1 β2 β1 β2
Estimator: Bias S.E. Bias S.E. Bias S.E. Bias S.E.
Case 1: V [yi|x] = 1
PPML −0.00004 0.016 0.00009 0.027 0.01886 0.017 0.02032 0.029
NLS −0.00006 0.008 −0.00003 0.017 0.00195 0.008 0.00274 0.018
GPML 0.01276 0.068 0.00754 0.082 0.10946 0.096 0.09338 0.108
OLS 0.39008 0.039 0.35568 0.054 – – – –
ET-Tobit −0.47855 0.030 −0.47786 0.032 −0.49981 0.030 −0.49968 0.032
OLS (y>0.5) −0.16402 0.027 −0.15487 0.038 −0.22121 0.026 −0.21339 0.036
OLS (y + 1) −0.40237 0.014 −0.37683 0.022 −0.37752 0.015 −0.34997 0.024
Case 2: V [yi|x] = µ (xiβ)
PPML −0.00011 0.019 0.00009 0.039 0.02190 0.020 0.02334 0.041
NLS 0.00046 0.033 0.00066 0.057 0.00262 0.033 0.00360 0.057
GPML 0.00376 0.043 0.00211 0.062 0.13243 0.073 0.11331 0.087
OLS 0.21076 0.030 0.19960 0.049 – – – –
ET-Tobit −0.42394 0.028 −0.42316 0.033 −0.45518 0.028 −0.45513 0.033
OLS (y>0.5) −0.17868 0.026 −0.17220 0.043 −0.24405 0.026 −0.23889 0.040
OLS (y + 1) −0.42371 0.015 −0.39931 0.025 −0.39401 0.016 −0.36806 0.028

Case 3: V [yi|x] = µ (xiβ)
2

PPML −0.00526 0.091 −0.00228 0.130 0.02332 0.091 0.02812 0.133
NLS 0.23539 3.066 0.07323 1.521 0.23959 3.082 0.07852 1.521
GPML −0.00047 0.041 −0.00029 0.083 0.17134 0.068 0.14442 0.104
OLS 0.00015 0.032 −0.00003 0.064 – – – –
ET-Tobit −0.31908 0.044 −0.32161 0.058 −0.36480 0.043 −0.36789 0.056
OLS (y>0.5) −0.34480 0.039 −0.34614 0.064 −0.41006 0.037 −0.41200 0.060
OLS (y + 1) −0.51804 0.021 −0.50000 0.038 −0.48564 0.022 −0.46597 0.040

Case 4: V [yi|x] = µ (xiβ) + exp (x2i)µ (xiβ)
2

PPML −0.00696 0.103 −0.00647 0.144 0.02027 0.104 0.01856 0.146
NLS 0.35139 7.516 0.08801 1.827 0.35672 7.521 0.09239 1.829
GPML 0.00322 0.057 −0.00137 0.083 0.12831 0.085 0.10245 0.129
OLS 0.13270 0.039 −0.12542 0.075 – – – –
ET-Tobit −0.29908 0.049 −0.42731 0.063 −0.34351 0.047 −0.46225 0.060
OLS (y>0.5) −0.41391 0.042 −0.41391 0.070 −0.45188 0.040 −0.46173 0.066
OLS (y + 1) −0.51440 0.021 −0.58087 0.041 −0.48627 0.022 −0.56039 0.044

In the first set of experiments, the results of the gamma PML estimator are very good.

Indeed, when no measurement error is present, the biases and standard errors of the

GPML estimator are always among the lowest. However, this estimator is very sensitive

to the form of measurement error considered in the second set of experiments, consistently

leading to sizable biases. These results, like those of the NLS, clearly illustrate the danger

of using a PML estimator that gives extra weight to the noisier observations.
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As for the performance of the Poisson PML estimator, the results are very encouraging.

In fact, when no rounding error is present, its performance is reasonably good in all cases.

Moreover, although some loss of efficiency is noticeable as one moves away from Case 2,

in which it is an optimal estimator, the biases of the PPML are always small.19 Moreover,

the results obtained with rounded data suggest that the Poisson based PML estimator

is relatively robust to this form of measurement error of the dependent variable. Indeed,

the bias introduced by the rounding-off errors in the dependent variable is relatively small

and, in some cases, it even compensates the bias found in the first set of experiments.

Therefore, because it is simple to implement and reliable under a wide variety of situations,

the Poisson PML estimator has the essential characteristics needed to make it the new

work-horse for the estimation of constant-elasticity models.

Obviously, the sign and magnitude of the bias of the estimators studied here depend on

the particular specification considered. Therefore, the results of these experiments cannot

serve as an indicator of what can be expected in other situations. However, it is clear

that, apart from the Poisson PML method, all estimators will often be very misleading.

These experiments were also used to study the finite sample performance of the Gauss-

Newton regression (GNR) test for the adequacy of the Poisson PML based on (13) and

of the Park test advocated by Manning and Mullahy (2001), which, as explained above,

is only valid to check for the adequacy of the estimator based on the log-linear model.20

Given that the Poisson PML estimator is the only estimator with a reasonable behavior

under all the cases considered, these tests were performed using residuals and estimates of

µ (xiβ) from the Poisson regression. Table 2 contains the rejection frequencies of the null

hypothesis at the 5 percent nominal level for both tests in the four cases considered in the

two sets of experiments. In this table the rejection frequencies under the null hypothesis

are given in bold.

19These results are in line with those reported by Manning and Mullahy (2001).
20To illustrate the pitfalls of the procedure suggested by Manning and Mullahy (2001) we note that the

means of the estimates of λ1 obtained using (11) in cases 1, 2 and 3 (without measurement error) were

0.58955, 1.29821 and 1.98705, whereas the true values of λ1 in these cases are, respectively, 0, 1 and 2.
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Since both tests have adequate behavior under the null and reveal reasonable power

against a wide range of alternatives, the results suggest that these tests are important

tools to assess the adequacy of the standard OLS estimator of the log-linear model and

of the proposed Poisson PML estimator.

Table 2: Rejection frequencies at the
5% level for the two specification tests

Without Measurement Error
Test Case 1 Case 2 Case 3 Case 4
GNR 0.91980 0.05430 0.58110 0.49100
Park 1.00000 1.00000 0.06680 0.40810

With Measurement Error
Test Case 1 Case 2 Case 3 Case 4
GNR 0.91740 0.14980 0.57170 0.47580
Park 1.00000 1.00000 1.00000 1.00000

5. The gravity equation

In this section, we use the PPML estimator to quantitatively assess the determinants of

bilateral trade flows, uncovering significant differences in the roles of various measures of

size and distance from those predicted by the logarithmic tradition. We perform the com-

parison of the two techniques using both the traditional and the Anderson-van Wincoop

(2003) specifications of the gravity equation.

For the sake of completeness, we also compare the PPML estimates with those ob-

tained from alternative ways researchers have used to deal with zero-values for trade. In

particular, we present the results obtained with the Tobit estimator used in Eaton and

Tamura (1994), OLS estimator applied to ln(1 + Tij), and a standard non-linear least

squares estimator. The results obtained with these estimators are presented, as before,

for both the traditional and the Anderson-van Wincoop specifications.

5.1 The data

The analysis covers a cross section of 136 countries in 1990. Hence, our data set consists

of 18, 360 observations of bilateral import flows (136 × 135 country pairs). The list of
countries is reported in Table A1 in the Appendix. Information on bilateral trade comes
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from Feenstra et al. (1997). Data on real GDP per capita and population come from

the World Bank’s World Development Indicators (2002). Data on location and dum-

mies indicating contiguity, common language (official and second languages), colonial ties

(direct and indirect links), and access to water are constructed from the CIA’s World

Factbook. The data on language and colonial links are presented on Tables A2 and A3 in

the appendix.21 Bilateral distance is computed using the great circle distance algorithm

provided by Andrew Gray (2001). Remoteness — or relative distance — is calculated as the

(log of) GDP-weighted average distance to all other countries (see Wei, 1996). Finally,

information on preferential-trade agreements comes from Frankel (1997), complemented

with data from the World Trade Organization. The list of preferential trade agreements

(and stronger forms of trade agreements) considered in the analysis is displayed in Table

A4 in the Appendix. Table A5 in the Appendix provides a description of the variables

and displays the summary statistics.

5.2 Results

5.2.1 The Traditional Gravity Equation

Table 3 presents the estimation outcomes resulting from the various techniques for the

traditional gravity equation. The first column reports OLS estimates using the logarithm

of trade as the dependent variable; as noted before, this regression leaves out pairs of

countries with zero bilateral trade (only 9, 613 country pairs, or 52 percent of the sample,

exhibit positive import flows).

The second column reports the OLS estimates using ln(1 + Tij) as dependent variable,

as a way of dealing with zeroes. The third column presents Tobit estimates based on

Eaton and Tamura (1994). The fourth column shows the results of standard NLS. The

fifth column reports Poisson estimates using only the subsample of positive-trade pairs.

21Alternative estimates based on Boisso and Ferrantino (1997)’s index of language similarity are avail-

able, at request, from the authors.
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Finally, the sixth column shows the Poisson results for the whole sample (including zero-

trade pairs).

The first point to notice is that PPML-estimated coefficients are remarkably similar

using both the whole sample and the positive-trade subsample.22 However, most coef-

ficients differ — oftentimes significantly — from those obtained using OLS. This suggests

that in this case, heteroskedasticity (rather than truncation) is responsible for the differ-

ences between PPML results and those of OLS using only the observations with positive

trade. Further evidence on the importance of the heteroskedasticity is provided by the

two-degrees-of-freedom special case of White’s test for heteroskedasticity (see Wooldridge,

2002, p. 127), which leads to a test statistic of 476.6 and to a p-value of zero. That is,

the null hypothesis of homoskedastic errors is unequivocally rejected.

Poisson estimates reveal that the coefficients on importer’s and exporter’s GDPs in

the traditional equation are not, as generally believed, close to 1. The estimated GDP

elasticities are just above 0.7 (s.e. = 0.03). OLS generates significantly larger estimates,

especially on exporter’s GDP (0.94, s.e. = 0.01). Although all these results are conditional

on the particular specification used,23 it is worth pointing out that unit-income elasticities

in the simple gravity framework are at odds with the observation that the trade-to-GDP

ratio decreases with total GDP, or, in other words, that smaller countries tend to be more

open to international trade.24

The role of geographical distance as trade deterrent is significantly larger under OLS;

the estimated elasticity is −1.17 (s.e. = 0.03), whereas the Poisson estimate is −0.78
(s.e. = 0.06). This lower estimate suggests a smaller role for transport costs in the

determination of trade patterns. Furthermore, Poisson estimates indicate that, after

controlling for bilateral distance, sharing a border does not influence trade flows, while

22The reason why truncation has little effect in this case is that observations with zero trade correspond

to pairs for which the estimated value of trade is close to zero. Therefore, the corresponding residuals

are also close to zero and their elimination from the sample has little effect.
23This result holds when one looks at the subsample of OECD countries. It is also robust to the

exclusion of GDP per capita from the regressions.
24Note also that PPML predicts almost equal coefficients for the GDPs of exporters and importers.
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OLS, instead, generates a substantial effect: It predicts that trade between two contiguous

countries is 37 percent larger than trade between countries that do not share a border.25

We control for remoteness to account for the hypothesis that larger distances to all

other countries might increase bilateral trade between two countries.26 Poisson regressions

support this hypothesis, whereas OLS estimates suggest that only exporter’s remoteness

increases bilateral flows between two given countries. Access to water appears to be

important for trade flows, according to Poisson regressions; the negative coefficients on

the land-locked dummies can be interpreted as an indication that ocean transportation is

significantly cheaper. In contrast, OLS results suggest that whether or not the exporter

is landlocked does not influence trade flows, whereas a landlocked importer experiences

lower trade. (These asymmetries in the effects of remoteness and access to water for

importers and exporters are hard to interpret.) We also explore the role of colonial

heritage, obtaining, as before, significant discrepancies: Poisson indicates that colonial ties

play no role in determining trade flows, once a dummy variable for common language is

introduced. OLS regressions, instead, generate a sizeable effect (countries with a common

colonial past trade almost 45 percent more than other pairs). Language is statistically

and economically significant under both estimation procedures.

Strikingly, in the traditional gravity equation, preferential-trade agreements play a much

smaller – although still substantial – role according to Poisson regressions. OLS esti-

mates suggest that preferential-trade agreements rise expected bilateral trade by 63 per-

cent, whereas Poisson estimates indicate an average enhancement effect below 20 percent.

Preferential-trade agreements might also cause trade diversion; if this is the case, the co-

efficient on the trade-agreement dummy will not reflect the net effect of trade agreements.

To account for the possibility of diversion, we include an additional dummy, “openness,”

similar to that used by Frankel (1997). This dummy takes the value 1 whenever one (or

25The formula to compute this effect is (ebi − 1)× 100%, where bi is the estimated coefficient.
26To illustrate the role of remoteness, consider two pairs of countries, (i, j) and (k, l), and assume that

the distance between the countries in each pair is the same Dij = Dkl, however, i and j are closer to

other countries. In this case, the most remote countries, k and l, will tend to trade more between each

other because they do not have alternative trading partners. See Deardoff (1998).
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both) of the countries in the pair is part of a preferential-trade agreement and, thus, it

captures the extent of trade between members and non-members of a preferential-trade

agreement. The sum of the coefficients on the trade agreement and the openness dummies

gives the net creation effect of trade agreements. OLS suggests that there is trade destruc-

tion coming from trade agreements. Still, the net creation effect is around 40 percent. In

contrast, Poisson regressions provide no significant evidence of trade diversion, although

the point estimates are of the same order of magnitude under both methods.

Hence, even when accounting for trade diversion effects, on average, the Poisson method

estimates a smaller effect of preferential-trade agreements on trade, approximately half

of that indicated by OLS. The contrast in estimates suggests that the biases generated

by standard regressions can be substantial, leading to misleading inferences and, perhaps,

erroneous policy decisions.27

We now turn briefly to the results of the other estimation methods. OLS on ln(1+Tij)

and Tobit give very close estimates for most coefficients. Like OLS, they yield large

estimates for the elasticity of bilateral trade with respect to distance. However, unlike

OLS, they produce insignificant coefficients for the contiguity dummy. They both generate

extremely large and statistically significant coefficients for the trade-agreement dummy.

The first method predicts that trade between two countries that signed a trade agreement

is on average 266 percent larger than that between countries without an agreement. The

second predicts that trade between countries in free-trade agreements is on average 100

percent larger. NLS tends to generate somewhat different estimates. The elasticity of

trade with respect to the exporter’s GDP is significantly smaller than OLS, but the

corresponding elasticity with respect to importer’s GDP is significantly larger than OLS.

The estimated distance elasticity is smaller than OLS and bigger than Poisson. As the

other methods, NLS predicts a significant and large effect for free-trade agreements.

27It is interesting to remark that there is a pattern in the direction of the bias generated by OLS.

The bias tends to be positive for the coefficients on variables that relate to larger volumes of trade and,

presumably, to larger variance. It tends to be negative for variables that deter trade and, possibly, reduce

the variance.
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Table 3: The Traditional Gravity Equation
Estimator OLS OLS Tobit NLS PPML PPML
Dependent Variable ln (Tij) ln (1 + Tij) ln (a+ Tij) Tij Tij > 0 Tij
Log exporter’s GDP 0.938∗∗ 1.128∗∗ 1.058∗∗ 0.738∗∗ 0.721∗∗ 0.733∗∗

(0.012) (0.011) (0.012) (0.038) (0.027) (0.027)
Log importer’s GDP 0.798∗∗ 0.866∗∗ 0.847∗∗ 0.862∗∗ 0.732∗∗ 0.741∗∗

(0.012) (0.012) (0.011) (0.041) (0.028) (0.027)
Log exporter’s GDP 0.207∗∗ 0.277∗∗ 0.227∗∗ 0.396∗∗ 0.154∗∗ 0.157∗∗
per capita (0.017) (0.018) (0.015) (0.116) (0.053) (0.053)
Log importer’s GDP 0.106∗∗ 0.217∗∗ 0.178∗∗ −0.033 0.133∗∗ 0.135∗∗
per capita (0.018) (0.018) (0.015) (0.062) (0.044) (0.045)
Log distance −1.166∗∗ −1.151∗∗ −1.160∗∗ −0.924∗∗ −0.776∗∗ −0.784∗∗

(0.034) (0.040) (0.034) (0.072) (0.055) (0.055)
Contiguity dummy 0.314∗ −0.241 −0.225 −0.081 0.202 0.193

(0.127) (0.201) (0.152) (0.100) (0.105) (0.104)
Common-language 0.678∗∗ 0.742∗∗ 0.759∗∗ 0.689∗∗ 0.752∗∗ 0.746∗∗
dummy (0.067) (0.067) (0.060) (0.085) (0.134) (0.135)
Colonial-tie dummy 0.397∗∗ 0.392∗∗ 0.416∗∗ 0.036 0.019 0.024

(0.070) (0.070) (0.063) (0.125) (0.150) (0.150)
Landlocked-exporter −0.062 0.106∗ −0.038 −1.367∗∗ −0.873∗∗ −0.864∗∗
dummy (0.062) (0.054) (0.052) (0.202) (0.157) (0.157)
Landlocked-importer −0.665∗∗ −0.278∗∗ −0.479∗∗ −0.471∗∗ −0.704∗∗ −0.697∗∗
dummy (0.060) (0.055) (0.051) (0.184) (0.141) (0.141)
Exporter’s remoteness 0.467∗∗ 0.526∗∗ 0.563∗∗ 1.188∗∗ 0.647∗∗ 0.660∗∗

(0.079) (0.087) (0.068) (0.182) (0.135) (0.134)
Importer’s remoteness −0.205∗ −0.109 −0.032 1.010∗∗ 0.549∗∗ 0.561∗∗

(0.085) (0.091) (0.073) (0.154) (0.120) (0.118)
Free-trade agreement 0.491∗∗ 1.289∗∗ 0.729∗∗ 0.443∗∗ 0.179∗ 0.181∗
dummy (0.097) (0.124) (0.103) (0.109) (0.090) (0.088)
Openness −0.170∗∗ 0.739∗∗ 0.310∗∗ 0.928∗∗ −0.139 −0.107

(0.053) (0.050) (0.045) (0.191) (0.133) (0.131)
Observations 9613 18360 18360 18360 9613 18360
RESET test p-values 0.000 0.000 0.204 0.000 0.941 0.331

It is noteworthy that all methods, except the PPML, lead to puzzling asymmetries in the

elasticities with respect to importer and exporter characteristics (especially remoteness

and access to water).

To check the adequacy of the estimated models, we performed a heteroskedasticity-

robust RESET test (Ramsey, 1969). This is essentially a test for the correct specification

of the conditional expectation, which is performed by checking the significance of an addi-

tional regressor constructed as (x0b)2, where b denotes the vector of estimated parameters.
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The corresponding p-values are reported at the bottom of table 4. In the OLS regression,

the test rejects the hypothesis that the coefficient on the test variable is zero. This means

that the model estimated using the logarithmic specification is inappropriate. A similar

result is found for the OLS estimated using ln(1 + Tij) as the dependent variable and

NLS. In contrast, the models estimated using the Poisson regressions pass the RESET

test, i.e., the RESET test provides no evidence of misspecification of the gravity equations

estimated using the PPML. With this particular specification, the model estimated using

Tobit also passes the test for the traditional gravity equation.

Finally, we also check whether the particular pattern of heteroskedasticity assumed

by the models is appropriate. As explained in section 3.2, the adequacy of the log-linear

model was checked using the Park-type test, whereas the hypothesis V [yi|x] ∝ µ (xiβ) was

tested by evaluating the significance of the coefficient on the term ln (y̌i)
√
y̌i in the Gauss-

Newton regression indicated in expression (13). The p-values of the tests are reported in

Table 4. Again, the log-linear specification is unequivocally rejected. On the other hand,

these results indicate that the estimated coefficient on ln (y̌i)
√
y̌i is insignificantly different

from zero at the usual 5 percent level. This implies that the Poisson PML assumption,

V [yi|x] = λ0E [yi|x] cannot be rejected at this significance level.

Table 4: Results of the tests for
type of heteroskedasticity (p-values).

Test (Null hypothesis) Trade > 0 Full sample
GNR (V [yi|x] ∝ µ (xiβ)) 0.144 0.115
Park (OLS is valid) 0.000 0.000

5.2.2 The Anderson-van Wincoop Gravity Equation

Table 5 presents the estimated coefficients for the Anderson-van Wincoop (2003) gravity

equation, which controls more properly for multilateral resistance terms by introducing

exporter and importer specific effects.

As before, the columns show, respectively, the estimated coefficients obtained using

OLS on the log of trade, OLS on ln(1 + Tij), Tobit, NLS, PPML on the positive-trade
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sample, and PPML. Note that, because this exercise uses cross sectional data, we can

only identify bilateral variables.28

As with the standard specification of the gravity equation, we find that using the

Anderson-van Wincoop (2003) specification, estimates obtained with the Poisson method

vary little when only the positive-trade subsample is used. Moreover, we find again strong

evidence that the errors of the log-linear model estimated using the sample with positive-

trade are heteroskedastic. With this specification, the two-degrees-of-freedom special case

of White’s test for heteroskedasticity leads to a test statistic of 469.2 and a p-value of

zero.

Since we are now conditioning on a much larger set of controls, it is not surprising to

find that most coefficients are sensitive to the introduction of fixed effects. For example,

in the Poisson method, although the distance elasticity remains about the same and the

coefficient on common colonial ties is still insignificant, the effect on common language

is now smaller and the coefficient on free-trade agreements is larger. The results of the

other estimations methods are generally much more sensitive to the inclusion of the fixed

effects.

Comparing the results of PPML and OLS for the positive-trade subsample, the follow-

ing observations are in order. The distance elasticity is substantially larger under OLS

(−1.35 versus −0.75). Sharing a border has a positive effect on trade under Poisson, but
no significant effect under OLS. Sharing a common language has similar effects under

both techniques. Common colonial ties have strong effects under OLS (with an aver-

age enhancement effect of 100 percent), whereas Poisson predicts no significant effect.

Finally, both techniques produce reasonably similar estimates for the coefficient on the

trade-agreement dummy, implying a trade-enhancement effect of the order of 40 percent.

28Since income elasticities cannot be separately identified, we use trade as the dependent variable of

the gravity equation and not the ratio of trade to the product of GDP’s, as in Anderson-van Wincoop

(2003).
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Like before, the other estimation methods lead to some puzzling results. For example,

OLS on ln(1+Tij) now yields a significantly negative effect of contiguity and under NLS,

the coefficient on common-colonial ties becomes significantly negative.

Finally, we performed the same set of specification tests used before. The p-values

of the heteroskedasticity-robust RESET test at the bottom of table 6 suggest that with

the Anderson-van Wincoop (2003) specification of the gravity equation, only the models

estimated by the PPLM method are adequate. The p-values of the tests to check whether

the particular pattern of heteroskedasticity assumed by the models is appropriate are

reported in Table 6. As in the traditional gravity equation, the log-linear specification

is unequivocally rejected. On the other hand, these results indicate that the estimated

coefficient on ln (y̌i)
√
y̌i is insignificantly different from zero at the usual 5 percent level.

This implies that the Poisson PML assumption, V [yi|x] = λ0E [yi|x] cannot be rejected
at this significance level.

Table 5: The Anderson-van Wincoop Gravity Equation.
Estimator OLS OLS Tobit NLS PPML PPML
Dependent Variable ln (Tij) ln (1 + Tij) ln (a+ Tij) Tij Tij > 0 Tij
Log distance −1.347∗∗ −1.332∗∗ −1.272∗∗ −0.582∗∗ −0.770∗∗ −0.750∗∗

(0.031) (0.036) (0.029) (0.088) (0.042) (0.041)
Contiguity 0.174 −0.399∗ −0.253 0.458∗∗ 0.352∗∗ 0.370∗∗
dummy (0.130) (0.189) (0.135) (0.121) (0.090) (0.091)
Common-language 0.406∗∗ 0.550∗∗ 0.485∗∗ 0.926∗∗ 0.418∗∗ 0.383∗∗
dummy (0.068) (0.066) (0.057) (0.116) (0.094) (0.093)
Colonial-tie 0.666∗∗ 0.693∗∗ 0.650∗∗ −0.736∗∗ 0.038 0.079
dummy (0.070) (0.067) (0.059) (0.178) (0.134) (0.134)
Free-trade agreement 0.310∗∗ 0.174 0.137∗∗ 1.017∗∗ 0.374∗∗ 0.376∗∗
dummy (0.098) (0.138) (0.098) (0.170) (0.076) (0.077)
Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 9613 18360 18360 18360 9613 18360
RESET test p-values 0.000 0.000 0.000 0.000 0.564 0.112

Table 6: Results of the tests for
type of heteroskedasticity (p-values).

Test (Null hypothesis) Trade > 0 Full sample
GNR (V [yi|x] ∝ µ (xiβ)) 0.100 0.070
Park (OLS is valid) 0.000 0.000
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To sum up, whether or not fixed effects are used in the specification of the model,

we find strong evidence that estimation methods based on the log-linearization of the

gravity equation suffer from severe misspecification, which hinders the interpretation of

the results. NLS is also generally unreliable. In contrast, the models estimated by PPML

show no signs of misspecification and, in general, do not produce the puzzling results

generated by the other methods.29

6. Conclusions

In this paper, we argue that the standard empirical methods used to estimate gravity

equations are inappropriate. The basic problem is that log-linearization (or, indeed, any

non-linear transformation) of the empirical model in the presence of heteroskedasticity

leads to inconsistent estimates. This is because the expected value of the logarithm of a

random variable depends on higher-order moments of its distribution. Therefore, if the

errors are heteroskedastic, the transformed errors will be generally correlated with the

covariates. An additional problem of log-linearization is that it is incompatible with the

existence of zeroes in trade data, which led to several unsatisfactory solutions, including

truncation of the sample (that is, elimination of zero-trade pairs) and further non-linear

transformations of the dependent variable.

29It is worth noting that the large differences in estimates among the various methods persist when we

look at a smaller subsample of countries that account for most of world trade and, quite likely, have better

data. More specifically, we run similar regressions for the subsample of 63 countries included in Frankel

(1997)’s study. These countries accounted for almost 90 percent of the world trade reported to the United

Nations in 1992. One advantage of this subsample is that the number of zeroes is significantly reduced.

Heteroskedasticity, however, is still a problem: The null hypothesis of homoskedasticity is rejected in

both the traditional and the fixed-effects gravity equations. As before, PPML generates a smaller role

for distance and common language than OLS, and, unlike OLS, PPML predicts no role for colonial ties.

In line with the findings documented in Frankel (1997), the OLS estimated coefficient on the free-trade-

agreement dummy is negative in both specifications of the gravity equation, whereas PPML predicts a

positive and significant effect (slightly bigger than that found for the whole sample. This results are

available — at request — from the authors.
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We argue that the biases are present both in the traditional specification of the gravity

equation and in the Anderson-van Wincoop (2003) specification, which includes country-

specific fixed effects.

To address the various estimation problems, we propose a simple Poisson pseudo-

maximum likelihood method and assess its performance using Monte Carlo simulations.

We find that in the presence of heteroskedasticity the standard methods can severely bias

the estimated coefficients, casting doubt on previous empirical findings. Our method,

instead, is robust to different patterns of heteroskedasticity and, in addition, provides a

natural way to deal with zeroes in trade data.

We use our method to re-estimate the gravity equation and document significant dif-

ferences from the results obtained using the log-linear method. For example, income elas-

ticities in the traditional gravity equation are systematically smaller than those obtained

with log-linearized OLS regressions. In addition, in both the traditional and Anderson-van

Wincoop specifications of the gravity equation, OLS estimation exaggerates the role of ge-

ographical proximity and colonial ties. OLS estimates of the impact of preferential-trade

agreements are very sensitive to the inclusion of fixed effects, whereas Poisson generates

more stable results. RESET tests systematically favour the Poisson PML technique. The

results suggest that heteroskedasticity (rather than truncation of the data) is responsible

for the main differences.

Log-linearized equations estimated by OLS are of course used in many other areas

of empirical economics and econometrics. Our Monte Carlo simulations and the regres-

sion outcomes indicate that in the presence of heteroskedasticity this practice can lead

to significant biases. These results suggest that, at least when there is evidence of het-

eroskedasticity, the Poisson pseudo-maximum likelihood estimator should be used as a

substitute for the standard log-linear model.
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Appendix
Table A1: List of countries.

Albania Denmark Kenya Romania
Algeria Djibouti Kiribati Russian Federation
Angola Dominican Rp. Korea Rp. Rwanda
Argentina Ecuador Laos P. Dem. Rp. Saudi Arabia
Australia Egypt Lebanon Senegal
Austria El Salvador Madagascar Seychelles
Bahamas Eq. Guinea Malawi Sierra Leone
Bahrain Ethiopia Malaysia Singapore
Bangladesh Fiji Maldives Solomon Islands
Barbados Finland Mali South Africa
Belgium-Lux. France Malta Spain
Belize Gabon Mauritania Sri Lanka
Benin Gambia Mauritius St. Kitts and Nevis
Bhutan Germany Mexico Sudan
Bolivia Ghana Mongolia Suriname
Brazil Greece Morocco Sweden
Brunei Guatemala Mozambique Switzerland
Bulgaria Guinea Nepal Syrian Arab Rp.
Burkina Faso Guinea-Bissau Netherlands Tanzania
Burundi Guyana New Caledonia Thailand
Cambodia Haiti New Zealand Togo
Cameroon Honduras Nicaragua Trinidad and Tobago
Canada Hong Kong Niger Tunisia
Central African Rp. Hungary Nigeria Turkey
Chad Iceland Norway Uganda
Chile India Oman United Arab Em.
China Indonesia Pakistan U.K.
Colombia Iran Panama U.S.A.
Comoros Ireland Papua New Guinea Uruguay
Congo Dem. Rp. Israel Paraguay Venezuela
Congo Rp. Italy Peru Vietnam
Costa Rica Jamaica Philippines Yemen
Cote D’Ivoire Japan Poland Zambia
Cyprus Jordan Portugal Zimbabwe
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Table A2: Common Official and Second Languages.
English French Spanish Dutch
Australia Belgium-Luxembourg Argentina Belgium-Lux
Bahamas Benin Belize Netherlands
Barbados Burkina Faso Bolivia Suriname
Belize Burundi Chile
Brunei Cameroon Colombia German
Cameroon Canada Costa Rica Austria
Canada Central Afr Rep Dominican Rp Germany
Fiji Chad Ecuador Switzerland
Gambia Comoros El Salvador
Ghana Congo Dem Rep Eq Guinea Greek
Guyana Congo Rep Guatemala Cyprus
Hong kong Cote D’Ivoire Honduras Greece
India Djibouti Mexico
Indonesia Eq Guinea Nicaragua Hungarian
Ireland France Panama Hungary
Israel Gabon Paraguay Romania
Jamaica Guinea Peru
Jordan Haiti Spain Italian
Kenya Lebanon Uruguay Italy
Kiribati Madagascar Venezuela Switzerland
Malawi Mali
Malaysia Mauritania Arabic Lingala
Maldives Mauritius Algeria Congo Dem Rep
Malta Morocco Bahrain Congo Rep
Mauritius New Caledonia Chad
New Zealand Niger Comoros Russian
Nigeria Rwanda Djibouti Mongolia
Oman Senegal Egypt Russian Federation
Pakistan Seychelles Israel
Panama Switzerland Jordan Swahili
Papua N Guinea Togo Lebanon Kenya
Philippines Tunisia Mauritania Tanzania
Rwanda Morocco
Seychelles Malay Oman Chinese
Sierra Leone Brunei Saudi Arabia China
Singapore Indonesia Sudan Hong kong
South Africa Malaysia Syria Malaysia
Sri Lanka Singapore Tanzania Singapore
St Helena Tunisia
St Kitts Nev Portuguese Untd Arab Em
Suriname Angola Yemen
Tanzania Brazil
Trinidad Tbg Guinea-Bissau Turkish
Uganda Mozambique Cyprus
UK Portugal Turkey
USA
Zambia
Zimbabwe
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Table A3: Colonial Ties.
UK UK France Spain
Australia Mauritius Algeria Argentina
Bahamas New Zeland Benin Bolivia
Bahrain Nigeria Burkina Faso Chile
Barbados Pakistan Cambodia Colombia
Belize Saint Kitts and Nevis Cameroon Costa Rica
Cameroon Seychelles Central African Rep. Cuba
Canada Sierra Leone Chad Ecuador
Cyprus South Africa Comoros El Salvador
Egypt Sri Lanka Congo Eq. Guinea
Fiji Sudan Djibouti Guatemala
Gambia Tanzania Gabon Honduras
Ghana Trinidad and Tobago Guinea Mexico
Guyana Uganda Haiti Netherlands
India United States Laos Nicaragua
Ireland Zambia Lebanon Panama
Israel Zimbabwe Madagascar Paraguay
Jamaica Mali Peru
Jordan Mauritania Venezuela
Kenya Portugal Morocco
Kuwait Angola Niger
Malawi Brazil Senegal
Malasya Guinea-Bissau Syria
Maldives Mozambique Togo
Malta Oman Tunisia

Vietnam
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Table A4: Preferential Trade Agreements in 1990.
EEC/EC CARICOM CACM
Belgium Bahamas Costa Rica
Denmark Barbados El Salvador
France Belize Guatemala
Germany Dominican Rp. Honduras
Greece Guyana Nicaragua
Ireland Haiti
Italy Jamaica Bilateral Agreements
Luxembourg Trinidad and Tobago EC-Cyprus
Netherlands St Kitts and Nevis EC-Malta
Portugal Suriname EC-Egypt
Spain EC-Syria
United Kingdom SPARTECA EC-Algeria

Australia EC-Norway
EFTA New Zealand EC-Iceland
Iceland Fiji EC-Switzerland
Norway Kiribati Canada-US
Switzerland Papua New Guinea Israel-US
Liechtenstein Solomon Islands

CER PATCRA
Australia Australia
New Zealand Papua New Guinea

Table A5: Summary Statistics.
Full Sample Trade > 0

Variable Mean Std. Dev. Mean Std. Dev.
Trade 172132.2 1828720 328757.7 2517139
Log of trade – – 8.43383 3.26819
Log of exporter’s GDP 23.24975 2.39727 24.42503 2.29748
Log of importer’s GDP 23.24975 2.39727 24.13243 2.43148
Log of exporter’s per capita GDP 7.50538 1.63986 8.09600 1.65986
Log of importer’s per capita GDP 7.50538 1.63986 7.98602 1.68649
Log of distance 8.78551 0.74168 8.69497 0.77283
Contiguity dummy 0.01961 0.13865 0.02361 0.15185
Common-language dummy 0.20970 0.40710 0.21284 0.40933
Colonial-tie dummy 0.17048 0.37606 0.16894 0.37472
Landlocked exporter dummy 0.15441 0.36135 0.10767 0.30998
Landlocked importer dummy 0.15441 0.36135 0.11401 0.31784
Exporter’s remoteness 8.94654 0.26389 8.90383 0.29313
Emporter’s remoteness 8.94654 0.26389 8.90787 0.28412
Preferential-trade agreement dummy 0.02505 0.15629 0.04452 0.20626
Openness dummy 0.56373 0.49594 0.65796 0.47442
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