Firm Size Distortions and the Productivity Distribution: Evidence from France

Luis Garicano (LSE, CEP, CEPR)
Claire Lelarge (CREST)
John Van Reenen (LSE, CEP, NBER)

NBER Entrepreneurship Group,
December 2nd 2011
Or…… “Lucas in France”

Firms in the manufacturing in

1. Ficus
MOTIVATION

- **Reallocation**: bigger share of economic activity to more efficient firms. Important in understanding:
 - Aggregate productivity across countries (Hsieh & Klenow, 2009; Restuccia & Rogerson, 2008; Bartelsman et al, 2009)
 - Aggregate productivity changes over time within countries (e.g. Bailey et al, 1992) & within industries (e.g. Olley & Pakes, 1996)
 - Trade with heterogeneous firms (Pavcnik, 2002; Mellitz, 2003; Bloom, Draca & Van Reenen, 2011)
- What are sources of misallocations/frictions?
 - Taxes, subsidies, product & financial markets
 - **Labor market regulation**. How do we estimate the cost of labor regulations? e.g. OECD or World Bank Employment Protection Legislation Index
CONTRIBUTION

• Focus on one major labor regulation in a general equilibrium setting:
 – Big firing cost for French firms when they have 50 or more employees

• Combine two sources of variation
 – Firm size distribution (“broken power law”)
 – Productivity distribution

• General methodology for estimating costs of (ubiquitous) size-related regulations
 – Discontinuity, power law plus theory aids econometric identification
RAW DATA ON NUMBER OF FIRMS BY EACH SIZE CLASS (NUMBER OF EMPLOYEES)

Exactly 49 employees
FIRM SIZE DISTRIBUTION IN US AND FRANCE – A “BULGE” OF EMPLOYMENT IN FRENCH FIRMS WITH JUST UNDER 50 WORKERS

The graph shows the distribution of firm size in terms of employment. The x-axis represents firm size in terms of employment, ranging from 10 to 5000. The y-axis represents the share of total employment, ranging from 0.0001 to 0.01.

The graph includes two types of data points:
- Crosses (×): Representing the US allocation of workers across firms.
- Circles (○): Representing the FR (France) allocation of workers across firms.

The graph illustrates a significant concentration of employment in firms with just under 50 workers, which is referred to as a “bulge.”
WHY THE BULGE?

• Sharp increase in regulation at 50 workers in France
 – Labor legislation sharply increases firing costs
 – If firm with 50 or more employees wants to dismiss some workers it must formulate a “social plan” to facilitate re-employment through training, job search, etc.
 – “Social Plan” must be negotiated with (& monitored by) unions, lawyers & Labor Ministry
 – High fines in labor courts for violation
 – Managerial time costs, etc.
OUTLINE

1. Theory: “Lucas in France”

2. Empirical Implementation

3. Data

4. Results
 - Main findings
 - Robustness/Extensions
THEORY

• One input, one sector.

• Distribution of managerial ability measured by Total Factor Productivity (TFP)

• Ability: how much an agent can raise a team’s output:
 – a manager with ability α and n workers produces
 – $y = \alpha f(n)$,
 – $f'(n) > 0$, $f''(n) < 0$ from managerial span of control problem (e.g. $f(n) = n^\Theta$, $\Theta < 1$)
INDIVIDUAL OPTIMIZATION

- Determination of firm size (employment) n:
- Economy-wide wage, w

$$
\pi(\alpha) = \max_n \alpha f(n) - w\bar{\tau}n \begin{cases}
\bar{\tau} = 1 & \text{if } n < N \\
\bar{\tau} = \tau & \text{if } n \geq N
\end{cases}
$$

- Labor regulation an implicit tax, τ, switching on at $N=50$
- First order condition:

$$
\alpha f'(n^*) - \bar{\tau}w = 0,
$$
EQUILIBRIUM (1)

1. An economy-wide wage level \(w \)
2. an allocation \(n(\alpha) \): firm size \((n)\) function of ability \((\alpha)\)
3. a triple of cutoffs: \(\{\alpha_{\text{MIN}}, \alpha_{\text{C}}, \alpha_{\text{U}}\} \)
EQUILIBRIUM (2)

1. No agent wishes to change occupation from manager to worker or to change from unconstrained to constrained.

2. The choice of $n(\alpha)$ for each manager is optimal given their skills α, taxes τ and wages w.

3. Labor supply = labor demand.
EQUILIBRIUM (3)

• Firm size & productivity:

\[n(\alpha) = \begin{cases}
0 & \text{if } \alpha < \alpha_{\text{min}} \\
 f'^{-1}\left(\frac{w}{\alpha}\right) & \text{if } \alpha_{\text{min}} < \alpha < \alpha_{c} \\
 N - 1 & \text{if } \alpha_{c} < \alpha < \alpha_{u} \\
 f'^{-1}\left(\frac{\tau w}{\alpha}\right) & \text{if } \alpha_{u} < \alpha < \infty
\end{cases} \]

Workers
`Small Firms’
`Constrained’
`Unconstrained’
THEORY: FIRM SIZE DISTRIBUTION (FIG 4)
THEORY: SIZE AND PRODUCTIVITY

Some productive firms choose to remain small to avoid "tax".
LABOR REGULATIONS GENERATES `TOO MANY’ SMALL FIRMS FOR 2 REASONS

• Firms choosing to remain small to avoid the regulation

• Equilibrium wage lower as workers bear some of the incidence of tax
 – This encourages low ability managers to form firms instead of remaining workers

• Too many entrepreneurial small firms in Southern Europe (e.g. Italy, Portugal – see Braguinsky, Branstetter & Regateiro, 2011)
OUTLINE

1. Theory: Lucas in France

2. Empirical Implementation

3. Data

4. Results
 - Main findings
 - Robustness/Extensions
EMPIRICAL IMPLEMENTATION

• Lucas (1978) shows that Gibrat’s law implies that:
 – The managerial returns to scale function must have a constant `elasticity’ form. We assume \(f(n) = n^\theta \)
 – A power law in firm size requires a power law in the ability distribution. Assume pdf of ability is:

\[
\phi(\alpha) = c_\alpha . \alpha^{-\beta_\alpha}
\]
EMPIRICAL IMPLEMENTATION

• Equilibrium Firm size distribution (pdf of n*):

\[
\chi^*(n) = \begin{cases}
(\beta - 1).n^{-\beta} & \text{if } n < 49 = n_1(\alpha_c) \\
49^{1-\beta} - T.n_u^{1-\beta} & \text{if } n = 49 = n_1(\alpha_c) \\
0 & \text{if } 49 < n < n_u = n_2(\alpha_u) \\
(\beta - 1).T.n^{-\beta} & \text{if } n_2(\alpha_u) = n_u \leq n
\end{cases}
\]

• \(\beta \) = “slope” of power law in firm size = \(\beta \alpha(1- \theta) + \theta \)

• Tax affects change in intercept & size of the ‘bulge’ and ‘dip’

\[
T = T^{-\frac{\beta - 1}{1-\theta}}
\]
EMPIRICAL IMPLEMENTATION (FIG. 6)
EMPIRICAL IMPLEMENTATION (FIG. 6)

Tax identified from
i) shift in the intercept
EMPIRICAL IMPLEMENTATION (FIG. 6)

Tax identified from
i) shift in the intercept
ii) “spike” & “hole”
FIRM SIZE MEASURED WITH ERROR

• Observed size (allow for measurement error)

\[n(\alpha, \varepsilon) = n^*(\alpha).e^\varepsilon \]

• Conditional cdf

\[\mathbb{P}(x < n|\varepsilon) = \begin{cases}
 0 & \text{if } \ln(n) < \varepsilon \\
 1 - (n.e^{-\varepsilon})^{1-\beta} & \text{if } \ln(n) - \ln(49) < \varepsilon \leq \ln(n) \\
 1 - T.n_u^{1-\beta} & \text{if } \ln(n) - \ln(n_u) < \varepsilon \leq \ln(n) - \ln(49) \\
 1 - T. (n.e^{-\varepsilon})^{1-\beta} & \text{if } \varepsilon \leq \ln(n) - \ln(n_u)
\end{cases} \]

• Obtain pdf of \(n \) & estimate parameters by ML to obtain \(\beta, T(t, \beta, \theta), n_u \).
• \(\theta \) from production function estimation to recover implicit \(t \).
THEORETICAL FIRM SIZE DISTRIBUTION (WITH MEASUREMENT ERROR)
OUTLINE

1. Theory: Lucas in France

2. Empirical Implementation

3. Data

4. Results
 • Main findings
 • Robustness/Extensions
DATA

• Universe of French firms between 2002 - 2007
 – Mandatory fiscal returns of all French firms ("FICUS") and DADS (for some skills and hours info)
 – This is the administrative unit that the main law pertains to.

• FICUS contains balance sheet information on value added, labor, capital, investment, wage bills, materials, SIC4, etc.
 – Use this to calculate TFP via several methods (LP, OP, Solow, etc.)
TFP & SIZE RELATIONSHIP: CONSISTENT WITH THEORY THERE IS A BULGE IN TFP AROUND THE REGULATORY THRESHOLD (FIG 10A)
OUTLINE

1. Theory: Lucas in France
2. Empirical Implementation
3. Data
4. Results
 • Main findings
 • Robustness/Extensions
TABLE 1: ML ESTIMATES OF SIZE DISTRIBUTION – THE BROKEN POWER LAW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>β, power law</td>
<td>1.702</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>Tax</td>
<td>0.799</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
</tr>
<tr>
<td>$T = \tau^{1-\theta}$</td>
<td>$\frac{1-\beta}{\sigma}$</td>
</tr>
<tr>
<td>n_u, upper emp.</td>
<td>61.068</td>
</tr>
<tr>
<td></td>
<td>(0.461)</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Observations</td>
<td>690,855</td>
</tr>
<tr>
<td>Firms</td>
<td>167,528</td>
</tr>
</tbody>
</table>

Note: Estimates by ML, Manufacturing firms with >1 employee, standard errors clustered by firm
FIRM SIZE DISTRIBUTION: ACTUAL AND FITTED (FIG 11)
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Scale parameter, θ</th>
<th>Implicit Tax, τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Calibrated</td>
<td>0.800</td>
<td>1.066</td>
</tr>
<tr>
<td>2. Using TFP-Size relationship</td>
<td>0.802</td>
<td>1.065</td>
</tr>
<tr>
<td>3. Using the production function parameters</td>
<td>0.874 (0.003)</td>
<td>1.041 (0.003)</td>
</tr>
<tr>
<td>4. Split sample production function</td>
<td>0.912 (0.003)</td>
<td>1.029 (0.003)</td>
</tr>
<tr>
<td>5. High tech industries</td>
<td>0.900 (0.008)</td>
<td>1.013 (0.006)</td>
</tr>
<tr>
<td>6. Low Tech industries</td>
<td>0.862 (0.008)</td>
<td>1.054 (0.005)</td>
</tr>
</tbody>
</table>

TABLE 2: ESTIMATES OF IMPLICIT TAX/COST OF LABOR REGULATION (~5%)
PRELIMINARY WELFARE COSTS

• Just looking at distortion around threshold of 49-61 employees
 – About 0.5% of GDP (small number of firms, but large falls in output)

• If include the cost of keeping large firms (61+ workers) smaller via the tax, much larger welfare losses
ROBUSTNESS/EXTENSIONS

• Big firms pretending to be small?
 – We see effects for standalone firms as well as those part of business groups

• Other margins of adjustment
 – Hours, capital, skills, outsourcing
 – Reduces cost, but still distortion unless perfect substitutes

• Industry heterogeneity

• Workers benefit from “insurance” & take lower wages (Lazear, 1990)?

• Growth around threshold
CONCLUSIONS

• Simple methodology for quantifying effect of size-related regulations
• Theory helps explain qualitative & quantitative features of data
• Loss of output is significant, ~5% implicit tax
• Next Steps:
 – Welfare
 – Productivity estimates
 – More industry heterogeneity
 – Dynamics
 – Build in other size-related regulations
 – Fixed vs. variable cost effects of regulation
 – Other explanations for firms 50-60
Back Up
DISTRIBUTION OF PLANT TFP DIFFERENCES IN US VS. INDIA
HIGHER US TFP DUE TO REALLOCATION - THINNER “TAIL”
OF LESS PRODUCTIVE PLANTS

Source: Hsieh and Klenow (2009); US mean=1
Firm size distribution: USA and France

![Graph showing firm size distribution for USA and France](image-url)
Previous Literature

• Papers using the same type of variation of the Lucas model:
 – Braguinsky, Branstetter & Regateiro (2011)

• On the empirical side:

 FSD: atheoretic «smoothing » strategies
 – Schivardi and Torrini (2008)
 – Ceci-Renaud and Chevallier (2010)

 Separation costs:
 – Kramarz & Michaud (2010): data about actual separation expenditures using tobit
EQUILIBRIUM (3)

• Occupations:

\[\alpha_{\text{min}} f(n) - wn = w \]

• Firm size:

\[n(\alpha) = 0 \quad \text{if} \quad \alpha < \alpha_{\text{min}} \]
\[n(\alpha) = f^{-1}\left(\frac{w}{\alpha}\right) \quad \text{if} \quad \alpha_{\text{min}} < \alpha < \alpha_c \]
\[n(\alpha) = N - 1 \quad \text{if} \quad \alpha_c < \alpha < \alpha_u \]
\[n(\alpha) = f^{-1}\left(\frac{\tau w}{\alpha}\right) \quad \text{if} \quad \alpha_u < \alpha < \infty \]

• Labor supply = labor demand

\[\Phi(\alpha_{\text{min}}) = \int_{\alpha_{\text{min}}}^{\infty} n(\alpha) \, d\Phi(\alpha) \]
EMPIRICAL IMPLEMENTATION

• TFP/Size relationship:

\[n^*(\alpha) = \begin{cases}
(\frac{\alpha_0}{w})^{1/(1-\theta)} = c_1.\alpha^{1/(1-\theta)} = n_1(\alpha) \\
49 = n_1(\alpha_c) \\
(\frac{\alpha_0}{w.\tau})^{1/(1-\theta)} = c_1.\tau^{1/(1-\theta)}.\alpha^{1/(1-\theta)} = n_1(\alpha).\tau^{1/(1-\theta)} < n_1(\alpha) \\
= c_2 \\
= n_2(\alpha) \\
\end{cases} \]

if \(\alpha < \alpha_c \)
if \(\alpha_c \leq \alpha < \alpha_u \)
if \(\alpha_u \leq \alpha \)

• Firm size distribution (pdf):

\[\chi^*(n) = \begin{cases}
(\beta - 1).n^{-\beta} & \text{if } n < 49 = n_1(\alpha_c) \\
49^{1-\beta} - T.n_u^{1-\beta} & \text{if } n = 49 = n_1(\alpha_c) \\
0 & \text{if } 49 < n < n_u = n_2(\alpha_u) \\
(\beta - 1).T.n^{-\beta} & \text{if } n_2(\alpha_u) = n_u \leq n \\
\end{cases} \]
THE IMPORTANCE OF USING THE RIGHT DATA
FULL TIME EQUIVALENTS (ANNUALIZED)
Manufacturing industries, 1986 vs 2006

![Graph showing the share of firms and employment in manufacturing industries, comparing 1986 and 2006. The x-axis represents employment, and the y-axis represents the logarithm of the share of firms. The graph indicates a decrease in the number of large firms and an increase in the number of small firms from 1986 to 2006.](image-url)
THEORY: SIZE AND PRODUCTIVITY (FIG. 5)
FIRM SIZE DISTRIBUTION - FICUS DATASET, ALL WORKERS (FIG. 8)
TFP & SIZE RELATIONSHIP: CONSISTENT WITH THEORY THERE IS A BULGE IN TFP AROUND THE REGULATORY THRESHOLD
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>High Tech Sectors</th>
<th>Low Tech Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β, power law</td>
<td>1.702</td>
<td>1.586</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.005)</td>
</tr>
<tr>
<td></td>
<td>Tax $T = \tau^{1-\beta}$</td>
<td>0.799</td>
<td>0.924</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.009)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>n_u, upper emp.</td>
<td>61.068</td>
<td>58.899</td>
<td>61.143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.461)</td>
<td>(1.559)</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ, variance of msremnt. error</td>
<td>0.212</td>
<td>0.140</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.004)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Observations</td>
<td>690,855</td>
<td>92,260</td>
<td>598,595</td>
</tr>
<tr>
<td>Firms</td>
<td>167,528</td>
<td>21,503</td>
<td>146,466</td>
</tr>
</tbody>
</table>
ITS NOT JUST BIG BUSINESS GROUPS PRETENDING TO BE SMALL
OTHER MARGINS OF ADJUSTMENT AROUND THE THRESHOLD: MORE CAPITAL PER WORKER
OTHER MARGINS OF ADJUSTMENT AROUND THE THRESHOLD: MORE SKILLS

Share of managerial & professional up

Share of blue collar workers down
OTHER MARGINS OF ADJUSTMENT AROUND THE THRESHOLD: MORE OUTSOURCED WORKERS
NO EVIDENCE THAT WORKERS ARE ACCEPTING LOWER WAGES IN RETURN FOR `INSURANCE’ AGAINST FIRING COSTS
NO EVIDENCE THAT WORKERS ARE ACCEPTING LOWER WAGES IN RETURN FOR `INSURANCE’ AGAINST FIRING COSTS