Early life adversity, biological risk factors, and later health

Andrea Danese, M.D. Ph.D.
Department of Child & Adolescent Psychiatry
and MRC Social, Genetic, and Developmental Psychiatry (SGDP) Centre
Institute of Psychiatry, King’s College London, UK
introduction

enduring effects of child stress

timing matters

biological embedding

conclusions
introduction

enduring effects of child stress

timing matters

biological embedding

conclusions
Foam cells Fatty steak Intermediate lesion Atheroma Fibrous plaque Complicated lesion / Rupture

From First Decade From Third Decade From Fourth Decade

Child Maltreatment and Disease Risk

<table>
<thead>
<tr>
<th>Disease</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic lung disease</td>
<td>3.9</td>
<td>[2.6-5.8]</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>2.2</td>
<td>[1.3-3.7]</td>
</tr>
<tr>
<td>Cancer</td>
<td>1.9</td>
<td>[1.3-2.7]</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.6</td>
<td>[1.0-2.5]</td>
</tr>
</tbody>
</table>

> Innate immunity

- Body physical barriers
 (e.g., skin, gastrointestinal tract)

- Non-self recognition
 (complement system, Toll-like receptors)

- Activation
 (cytokines, endothelial cells)

- Response
 (phagocytes, acute phase proteins)
INFLAMMATION & AGE-RELATED DISEASE

INFLAMMATION REGULATION

STRESS

SYMPATHETIC

GLUCOCORTICOID

PARASYMPATHETIC

INFLAMMATION REGULATION
INFLAMMATION REGULATION AND CHILD MALTREATMENT

Heim C et al, Psychoneuroendocrinology 2008, 33: 693-710
introduction

> enduring effects of child stress

timing matters

biological embedding

conclusions
THE DUNEDIN STUDY

Representative birth cohort followed up from birth to age 32y

N=972 (at age 32 years)

Childhood maltreatment (multiple informants, multiple time points)

High-sensitivity CRP (>3mg/dL, cont), fibrinogen, white blood cell count
CHILDHOOD MALTREATMENT
AGE 3-11 YEARS

Maternal rejection (14%)
Harsh discipline (10%)
Disruptive caregivers changes (6%)
Physical abuse (4%)
Sexual abuse (12%)

No
Probable
Definite
MAL'TREATMENT AND ADULT INFLAMMATION

HIGH RISK GROUP FOR CARDIOVASCULAR DISEASE (CDC, AHA)

Danese A et al, PNAS 2007, 104:1319-24
MALTREATMENT AND ADULT INFLAMMATION

RR = 1.80 [1.26-2.58]
MALTREATMENT AND ADULT INFLAMMATION
CO-OCCURRING EARLY-LIFE RISKS

Low birth weight. RR = 0.87 [0.49-1.53]
*Low child SES. RR = 1.89 [1.50-2.39]
*Low child IQ. RR = 2.12 [1.56-2.87]

*Low birth weight. RR = 1.60 [1.00-2.57]
*Low child SES. RR = 1.96 [1.19-3.25]
*Low child IQ. RR = 1.44 [1.03-2.01]

RR = 1.80 [1.26-2.58]
MALTREATMENT AND ADULT INFLAMMATION
CO-OCCURRING EARLY-LIFE RISKS

RR = 1.58 [1.08-2.31]

Low birth weight. RR = 0.87 [0.49-1.53]
*Low child SES. RR = 1.89 [1.50-2.39]
*Low child IQ. RR = 2.12 [1.56-2.87]

RR = 1.80 [1.26-2.58]

*Low birth weight. RR = 1.60 [1.00-2.57]
*Low child SES. RR = 1.96 [1.19-3.25]
*Low child IQ. RR = 1.44 [1.03-2.01]
MALTREATMENT AND ADULT INFLAMMATION

ADULT STRESS EXPOSURE

*Low adult SES. RR = 1.48 [1.23-1.73]
*Major Depression. RR = 1.46 [1.10-1.94]
*High Perc. Stress. RR = 1.43 [1.12-1.82]

Low adult SES. RR = 1.44 [0.94-2.20]
*Major Depression. RR = 1.45 [1.06-1.99]
*High Perc. Stress. RR = 1.45 [1.08-1.94]
MALTREATMENT AND ADULT INFLAMMATION

ADULT STRESS EXPOSURE

*Low adult SES. RR = 1.44 [0.94-2.20]
*Major Depression. RR = 1.45 [1.06-1.99]
*High Perc. Stress. RR = 1.45 [1.08-1.94]

*Low adult SES. RR = 1.48 [1.23-1.73]
*Major Depression. RR = 1.46 [1.10-1.94]
*High Perc. Stress. RR = 1.43 [1.12-1.82]

RR = 1.64 [1.13-2.40]

RR = 1.80 [1.26-2.58]

Low adult SES. RR = 1.44 [0.94-2.20]
*Major Depression. RR = 1.45 [1.06-1.99]
*High Perc. Stress. RR = 1.45 [1.08-1.94]
MALTREATMENT AND ADULT INFLAMMATION
ADULT HEALTH & HEALTH BEHAVIOURS

*CV risk cluster. RR = 2.38 [1.84-3.10]
*Smoking. RR = 1.18 [0.69-2.03]
*Physical inactivity. RR = 1.57 [1.05-2.34]
Diet. RR = 1.01 [0.68-1.48]
MALTREATMENT AND ADULT INFLAMMATION
ADULT HEALTH & HEALTH BEHAVIOURS

RR = 1.76 [1.23-2.51]
RR = 1.80 [1.26-2.58]

*CV risk cluster. RR = 1.48 [1.10-2.00]
Smoking. RR = 1.91 [1.13-3.23]
Physical inactivity. RR = 0.87 [0.69-1.11]
Diet. RR = 0.98 [0.78-1.23]

*CV risk cluster. RR = 2.38 [1.84-3.10]
Smoking. RR = 1.18 [0.69-2.03]
*Physical inactivity. RR = 1.57 [1.05-2.34]
Diet. RR = 1.01 [0.68-1.48]
MALTREATMENT AND ADULT INFLAMMATION

Danese A et al, PNAS 2007, 104:1319-24
MALTREATMENT AND ADULT INFLAMMATION

Danese A et al, PNAS 2007, 104:1319-24
MALTREATMENT AND ADULT INFLAMMATION

Danese A et al, PNAS 2007, 104:1319-24

A

B

C

D

hsCRP (log-transformed)

Fibrinogen (g/L)

WBC (x10^9)

Inflammation factor

No
Probable
Definite

No
Probable
Definite

No
Probable
Definite

No
Probable
Definite

Childhood maltreatment

Childhood maltreatment

Childhood maltreatment
CHILD MALTREATMENT AND ADULT INFLAMMATION

CHILD SOCIO-ECONOMIC DISADVANTAGE AND ADULT INFLAMMATION

CHILD SOCIAL ISOLATION
AND ADULT INFLAMMATION

SUMMARY (1)

> Children who experienced maltreatment, socio-economic disadvantage and social isolation show a significant and graded elevation in inflammation levels 20 years later, in adulthood.

> The effects of adverse childhood experiences on adult inflammation are independent of the influence of co-occurring risk factors.

> 10% of the cases of inflammation in the population may be attributable to childhood maltreatment.
introduction

enduring effects of child stress

> timing matters

biological embedding

conclusions
EARLY EXPERIENCE & HEALTH
THE EPIGENETIC LANDSCAPE

TIME (age)

ADULT DISEASE RISK

E1 (t1)
E1 (t2)
E2 (t3)

Waddington CH (1975)
CHILD STRESS vs ADULT STRESS

Danese A et al, Arch Gen Psychiatry 2008, 65: 409-15
CHILDS STRESS vs ADULT STRESS

Danese A et al, Arch Gen Psychiatry 2008, 65: 409-15
CHILD STRESS vs ADULT STRESS

Danese A et al, Arch Gen Psychiatry 2008, 65: 409-15
CHILD STRESS vs ADULT STRESS

Danese A et al, Arch Gen Psychiatry 2008, 65: 409-15
CHILD STRESS vs ADULT STRESS

Danese et al, Arch Gen Psychiatry 2008, 65: 409-15
CHILD STRESS vs ADULT STRESS

STRESS PHYSIOLOGY

<table>
<thead>
<tr>
<th></th>
<th>Adult stress</th>
<th>Child stress</th>
<th>Adult+Child stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAIN IMAGING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippocampus volume</td>
<td>=</td>
<td>?</td>
<td>↓</td>
</tr>
<tr>
<td>TSST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTH</td>
<td>=</td>
<td>↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Cortisol</td>
<td>=</td>
<td>=</td>
<td>↑</td>
</tr>
<tr>
<td>DEX SUPPRESSION TEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTH</td>
<td>=</td>
<td>=</td>
<td>↓</td>
</tr>
<tr>
<td>Cortisol</td>
<td>=</td>
<td>=</td>
<td>↓</td>
</tr>
<tr>
<td>INFLAMMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsCRP >3 mg/L</td>
<td>=</td>
<td>↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Inflammation factor</td>
<td>=</td>
<td>↑</td>
<td>↑↑</td>
</tr>
</tbody>
</table>

Danese A et al, *Arch Gen Psychiatry* 2008, 65: 409-15
SUMMARY (2)

> Stress in childhood may modify developmental trajectories and have long-term effect on disease risk.

> If stress does modify developmental trajectories, more favourable conditions later in life may have little effect on disease risk.

> Stress later in life may have a smaller effect on disease risk, because it acts on a more developed system.
introduction

enduring effects of child stress

timing matters

> biological embedding

conclusions
STRESS BIOLOGY IN YOUNG PEOPLE

DRIED BLOOD SPOTS
BIOLOGICAL EMBEDDING
OF CHILD STRESS THROUGH INFLAMMATION PROCESSES

Danese A et al, Mol Psychiatry (in press)
BIOLOGICAL EMBEDDING
OF CHILD STRESS THROUGH INFLAMMATION PROCESSES

$r(CRP_{dbs}, WHR) = .22, p = 0.005$

Danese A et al, *Mol Psychiatry (in press)*
BIOLOGICAL EMBEDDING
OF CHILD STRESS THROUGH INFLAMMATION PROCESSES

$r(CRP_{dbs},T^\circ)=.18, \ p=0.020$

Danese A et al, *Mol Psychiatry (in press)*
> Stress-related elevation in inflammation biomarkers can already be observed in childhood.

> Childhood elevation in inflammation levels has been linked to the presence of key preclinical indicators of adult disease risk in children, such as advanced atherosclerosis progression.

> Interventions targeting stress in children could prevent the translation of psychosocial risks into enduring biological risks.
introduction

during effects of child stress

timing matters

biological embedding

> conclusions
CONCLUSIONS

> Inflammation could be an important biological mediator of the effect of adverse childhood experiences on adult health.

CONCLUSIONS

> Effective preventive strategies for adult disease should start from an early age.

ACKNOWLEDGEMENT

Avshalom Caspi
Temi Moffitt
Carmine Pariante
Louise Arseneault
Peter McGuffin
Dunedin & TEDS-Environment Teams