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Abstract 
We study a standard consumption based asset pricing model with rationally investing agents but allow 

agents’ prior beliefs about price and dividend behavior to deviate slightly from rational expectations 

priors. Learning about stock price behavior then causes the model to become quantitatively consistent 

with a range of basic asset prizing ‘puzzles’: stock returns display momentum and mean reversion, 

asset prices become volatile, the price-dividend ratio displays persistence, long-horizon returns 

become predictable and a risk premium emerges. Comparing the moments of the model with those in 

the data using confidence bands from the method of simulated moments, we show that our findings 

are robust to different assumptions on the system of beliefs and other model features. We depart from 

previous studies of asset prices under learning in that agents form expectations about future stock 

prices using past price observations. 
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"Investors, their confidence and expectations buoyed by past price
increases, bid up speculative prices further, thereby enticing more
investors to do the same, so that the cycle repeats again and again.”

Irrational Exuberance, Shiller (2005, p.56)

1 Introduction

The purpose of this paper is to show that a very simple asset pricing model
is able to quantitatively reproduce a variety of stylized asset pricing facts if
one allows for small departures from rational expectations.

We study a simple variant of Lucas (1978) model. It is well known that
the asset prices implications of this model under rational expectations (RE)
are at odds with some basic facts: in the data, the price dividend ratio is
too volatile and persistent, stock returns are too volatile, long horizon excess
returns of stocks are negatively related to the price dividend ratio, and the
risk premium is too high. We stick to Lucas’ framework but allow for agents
whose prior beliefs about price and dividend behavior deviate slightly from
those assumed under a rational expectations (RE) analysis of the model.
Our slight relaxation of prior beliefs implies that agents need to learn about
stock price behavior and we show that this feature alters the asset price
predictions of the model in a way to make it quantitatively consistent with
all the basic facts listed above.

We consider investors who hold a consistent system of beliefs about the
stochastic process for payoff-relevant variables that are beyond their control.
In our model, these variables consist of the (exogenous) dividend process and
the process for (competitive) stock market prices. And given these beliefs
investors maximize a standard time-separable utility function subject to
their budget constraints. We call such agents ‘internally rational’. Just
to emphasize: such agents behave as if they knew dynamic programming
under uncertainty, the theory of Markov stochastic processes and Bayesian
updating and filtering.

Unlike in a RE analysis, however, we do not assume that agents know
perfectly how a certain dividend history maps into a market outcome for the
stock price.1 Agents express this uncertainty by specifying a subjective dis-

1Such uncertainty may arise from a lack of common knowledge of investors’ price and
dividend beliefs, as is explained in detail in Adam and Marcet (forthcoming).
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tribution over stock price and dividend outcomes and optimally update their
beliefs about price behavior in the light of realized market outcomes. For
a general class of beliefs, we find that such learning from market outcomes
imparts ‘momentum’ on stock prices and produces large and sustained de-
viations of the price dividend ratio from its mean, as can be observed in the
data. Such momentum arises because if agents’ expectations about stock
price growth increase in a given period, the actual growth rate of prices has
a tendency to increase beyond the fundamental growth rate, thereby rein-
forcing the initial belief of higher stock price growth. Yet, the model also
displays ‘mean reversion’ so that so that even if expectations are very high
or very low at some point, they will eventually return to fundamentals. The
model thus displays something like the ‘naturally occurring Ponzi schemes’
described in the opening quote.

Our formulation of beliefs naturally nests RE as a special case and there-
fore provides a precise sense in which beliefs are close to the RE prior beliefs.
To capture the distance relative to the RE prior we add just one free pa-
rameter relative to the standard model and this parameter has a natural
economic and statistical interpretation capturing the strength with which
agents’ beliefs react to market outcomes. Under the RE analysis, market
outcomes carry only redundant information, so that this parameter is set to
zero. But as we document, the match with the data becomes very good for
belief systems that imply that agents should place a small but strictly posi-
tive weight on market information. We find it a striking observation that the
asset pricing implications of the standard model are not robust to such small
departures from rational price expectations and that this non-robustness is
empirically so encouraging. This suggests that allowing for such kind of
departures from a strong assumption (RE) could be a promising avenue for
research more generally.

We wish to emphasize that we achieve the fit with the data within a very
simple setting. The asset pricing equation derived in the paper is the same
one-step-ahead equation that is typically considered under the RE analysis
of the model. Moreover, internally rational behavior implies that agents use
a standard model of adaptive learning to update their subjective expecta-
tions of the one-step-ahead variables appearing in the asset pricing equation.
Specifically, Bayesian belief updating implies that agents optimally use least
squares learning, and as we show, agents would asymptotically converge to
the RE outcome, i.e., learn to become fully rational, although this takes
a long time. To avoid the issue of asymptotically vanishing volatility and
to obtain an ergodic equilibrium distribution, we focus in our empirical
application mainly on a constant gain learning mechanism, which places
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non-vanishing weight on market information.
The paper is organized as follows. In section 2 we discuss the related

literature and section 3 presents the stylized asset pricing facts we seek to
match. In section 4 we then outline the asset pricing model and derive a
series of analytic results for the case with risk neutral investors to show how
our model is able to qualitatively deliver the stylized asset pricing facts for
a general class of belief systems. In section 5 we present the baseline asset
pricing model with risk aversion used in our empirical application and the
baseline calibration procedure for matching the data. Section 6 shows that
the baseline model can quantitatively reproduce the facts discussed in section
3 and also documents the robustness of our findings to various assumptions
about the model or the estimation procedure.

Readers interested in obtaining a glimpse of the quantitative performance
of our one parameter extension of the RE model may directly jump to Table
2 in section 6.1.

2 Related Literature

A large body of literature has documented that the basic asset pricing model
with time separable preferences and RE has great difficulties in matching the
volatility and persistence of the price dividend ratio, the volatility of stock
returns, the predictability of excess returns at long horizons and the risk
premium.2 Models of learning have for long been considered as a promising
avenue for increasing the model implied volatility and thereby the match
with the data.

A string of papers within the adaptive learning literature study agents
who learn about stock prices. Bullard and Duffy (2001) and Brock and
Hommes (1998) show that learning dynamics can converge to complicated
attractors and that the RE equilibrium may be unstable under learning
dynamics.3 Branch and Evans (forthcoming) study a model where agents’
algorithm to form expectations switches depending on which of the available
forecast models is performing best. Marcet and Sargent (1992) also study
convergence to RE in a model where agents use today’s price to forecast
the price tomorrow in a stationary environment with private information.
Cárceles-Poveda and Giannitsarou (2007) assume that agents know the mean

2See Cambell (2003) for an overview. Cecchetti, Lam, and Mark (2000) determine the
misspecification in beliefs about future consumption growth required to match the equity
premium and other moments of asset prices.

3Stability under learning dynamics is defined in Marcet and Sargent (1989).

3



stock price and find that learning does then not significantly alter the be-
havior of asset prices. Relative to these papers we address the data more
closely and we derive our model of adaptive learning and asset pricing from
internally rational investor behavior.

Stock price behavior under Bayesian learning has been previously studied
in Timmermann (1993, 1996), Brennan and Xia (2001), Cogley and Sargent
(2008) and Pastor and Veronesi (2003) among others. Agents in these papers
learn about the dividend process and then set the asset price equal to the dis-
counted expected sum of dividends. This amounts to assuming that agents’
beliefs about the joint distribution of prices and dividends contains a singu-
larity and that market outcomes contain only redundant information. As a
result, there is no feedback from market outcomes (stock prices) to beliefs
(price expectations). Agents’ beliefs in these settings are thus ‘anchored’
by the exogenous dividend process, so that the volatility effects resulting
from learning are generally limited when considering standard time separa-
ble preference specifications. In contrast, we largely abstract from learning
about the dividend process and consider learning about stock price behavior
using past price observations. In such a setting price beliefs and actual price
outcomes mutually influence each other. It is precisely this self-referential
nature of the learning problem that imparts momentum to expectations and
is key in explaining stock price volatility.4

In contrast to the RE literature, the behavioral finance literature tries to
understand the decision-making process of individual investors by means of
surveys, experiments and micro evidence, exploring the intersection between
economics and psychology, see Shiller (2005) for a non-technical summary.
We borrow from this literature an interest in deviating from RE but we are
interested in small deviations from the standard approach: we assume that
agents behave optimally given a consistent system of subjective beliefs that
are close to RE beliefs.

3 Facts

This section describes stylized facts of U.S. stock price data that we seek to
replicate in our quantitative analysis. These observations have been exten-
sively documented in the literature. We reproduce them here as a point of

4Timmerman (1996) also analyzes a case with self-referential learning, assuming that
agents use dividends to predict future price. He reports that this form of learning delivers
even lower volatility than a settings with learning about the dividend process only. It is
thus crucial for our results that agents use information on past price behavior to predict
future price behavior.
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Figure 1: Quarterly U.S. price dividend ratio 1927:1-2005:4

reference using a single and updated data base.5

Since the work of Shiller (1981) and LeRoy and Porter (1981) it has been
recognized that the volatility of stock prices in the data is much higher than
standard RE asset pricing models suggest, given the available evidence on
the volatility of dividends. Figure 1 shows the evolution of the quarterly
price dividend (PD) ratio in the United States. The PD ratio displays very
large fluctuations around its sample mean (the green horizontal line in the
graph): in the year 1932, for example, the PD ratio takes on values below
30, while in the year 2000 values close to 350. The standard deviation of the
PD ratio (σPD) is almost one half of its sample mean (E(PD)). We report
this feature of the data as Fact 1 in Table 1.

Figure 1 also shows that the deviation of the PD ratio from its sample
mean are very persistent, so that the first order quarterly autocorrelation
of the PD ratio (ρPD,−1) is very high. We report this as Fact 2 in Table 1
below .

Related to the excessive volatility of prices is the observation that the
volatility of stock returns (σrs) in the data is almost four times the volatility
of dividend growth (σ∆D/D). We report the volatility of returns as Fact 3
in Table 1, and the mean and standard deviation of dividend growth at the

5Details on the data sources are provided in Appendix 8.1.
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bottom of the table.6

U.S. asset pricing facts, 1927:2-2005:4
(quarterly real values, growth rates & returns in percentage terms)

Fact 1 Volatility of E(PD) 113.20
PD ratio σPD 52.98

Fact 2 Persistence of ρPD,−1 0.92
PD ratio

Fact 3 Excessive return σrs 11.65
volatility

Fact 4 Excess return c25 -0.0048
predictability R25 0.1986

Fact 5 Equity premium E [rs] 2.41
E
£
rb
¤

0.18

Dividend Mean Growth E
¡
∆D
D

¢
0.0035

Behavior Std of Growth σ∆D
D

2.98

Table 1: Stylized asset pricing facts

While stock returns are difficult to predict at short horizons, the PD
ratio helps to predict future excess stock returns in the long run. More
precisely, estimating the regression

Xt,n = c1n + c2n PDt + ut,n

where Xt,n is the observed real excess return of stocks over bonds from
quarter t to quarter t plus n years, and ut,n the regression residual, the
estimate c2n is found to be negative, significantly different from zero, and

6We treat the dividend process as exogenous in the model, therefore do not report the
dividend moments as ‘Facts’ that have to be matched endogenously by our model.
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the absolute value of c2n and the R-square of this regression, denoted R2n,
increase with n. We choose to include the OLS regression results for the
5-year horizon as Fact 4 in Table 1.7

Finally, it is well known that through the lens of standard models real
stock returns tend to be too high relative to short-term real bond returns.
This so called equity premium puzzle is reported as Fact 5 in Table 1, which
shows that the average quarterly real return on bonds E

¡
rbt
¢
is much lower

than the corresponding return on stocks E (rst ) .
Table 1 reports ten statistics. As we show in section 6, once we use the

evidence on dividend growth to calibrate the dividend process in the model,
we can replicate the remaining 8 statistics listed as Facts 1-5 using a model
that has only two free parameters.

4 The Theory

We describe in section 4.1 below a basic Lucas (1978) asset pricing model
with internally rational agents and derive the resulting asset pricing equa-
tion when agents are uncertain about the price outcomes. Section 4.2 then
presents - for the case with risk neutral investors - a number of analytical re-
sults regarding asset price behavior under learning. These results illustrate
why our learning model can qualitatively replicate the facts mentioned in
Table 1 for a large number of natural belief specifications. Finally, section
4.3 shows how internally rational behavior is compatible with well known
models of adaptive learning.

4.1 The Model

The Environment: Consider an economy populated by a unit mass of
infinitely-lived investors endowed with one unit of a stock that can be traded
on a competitive stock market and that pays a dividend Dt, which evolves
according to

Dt

Dt−1
= aεt (1)

7We focus on the 5-year horizon for simplicity, but obtain very similar results for
other horizons. Our focus on a single horizon is justified because chapter 20 in Cochrane
(2005) shows that Facts 1, 2 and 4 are closely related: up to a linear approximation, the
presence of return predictability and the increase in the R2

n with the prediction horizon n
are qualitatively a joint consequence of persistent PD ratios (Fact 2) and i.i.d. dividend
growth. It is not surprising, therefore, that our model also reproduces the increasing size
of c2n and R2

n with n. We match the regression coefficients at the 5-year horizon to check
the quantitative model implications.
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for t = 0, 1, 2, ..., where log εt ∼ iiN (−s2

2 , s
2) and a ≥ 1. These assumptions

guarantee that E(εt) = 1, E
³

Dt
Dt−1

´
= a and σ∆D

D
= s.

Objective Function and Probability Space: Agent i has a standard
time-separable expected utility function

EP0

∞X
t=0

δtu(Ci
t)

where u(·) is a concave function, Ci
t denotes consumption and the expec-

tation is with respect to a subjective probability measure P assigning a
consistent set of probabilities to variables that are beyond the agent’s con-
trol.

The competitive market assumption and the exogeneity of the dividend
process imply that investors consider the process for prices and dividends
as exogenous to their decision problem. The underlying sample (or state)
space Ω thus consists of the space of realizations for dividends and prices.
Specifically, a typical element ω ∈ Ω is an infinite sequence ω = {Pt,Dt}∞t=0
where Pt is the stock price in period t. As usual, we let Ωt denote the set
of histories from period zero up to period t and ωt its typical element. The
underlying probability space is then given by (Ω,B,P) with B denoting the
corresponding σ-Algebra of Borel subsets of Ω, and P a probability measure
over (Ω,B). Expected utility is thus defined as

EP0

∞X
t=0

δtu(Ci
t) ≡

Z
Ω

∞X
t=0

δt u(Ci
t(ω

t)) dP(ω). (2)

Importantly, our definition of the probability space is non-standard be-
cause we include price histories in the realization ωt. Standard practice is
to assume instead that agents know the mapping from history of dividends
to asset prices Pt(Dt), as it emerges in equilibrium, such that for each pos-
sible dividend realization, agents can exactly and without any doubt - with
probability one - compute the associated price for the asset. This practice is
standard in models of rational expectations, in models with rational bubbles,
in Bayesian RE models, and in models of robust control.

The standard practice amounts to imposing form the start a singular-
ity in the joint density over prices and dividends; and the presence of this
singularity justifies that the agent’s state space Ω can be defined from the
outset in terms of realizations of the fundamentals (dividends) only. With-
out doubt this practice is a convenient modeling device, as it allows the
modeler to abstract from a potential independent role for expectations and
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to focus on other features of the environment, as has been advocated by
the RE literature over the last decades. But the assumption that agents
know exactly the equilibrium pricing function Pt(·) is undoubtedly a very
strong assumption and we propose to relax it here.8 Doing so will allow us
to eliminate the asymmetric treatment of learning in much of the existing
literature, which assumes that agents learn about dividend behavior but
know all about price behavior (conditional on dividends).

Choices and Constraints: Agents make contingent consumption and
stockholding plans, i.e., choose for all t the functions¡

Ci
t , S

i
t

¢
: Ωt → R2 (3)

where Si
t denotes the stock holdings in period t. Their choices are subject

to a standard budget constraint

Ci
t + Pt S

i
t ≤ (Pt +Dt)S

i
t−1 (4)

for all t ≥ 0, taking as given the initial stockholding Si
−1 = 1. In addition,

the agent faces the following limit constraints on stockholdings

Si
t ≥ 0 (5)

Si
t ≤ S (6)

for some S ∈ (1,∞). Constraint (5) is a standard short-selling constraint
and often used in the literature. The second constraint (6) is a simplified
form of a leverage constraint capturing the fact that the consumer cannot
buy arbitrarily large amounts of stocks.

Maximizing Behavior (Internal Rationality): The investor’s prob-
lem then consists of choosing the sequence of functions {Ci

t , S
i
t}∞t=0 defined

in (3) to maximize (2) subject to the budget constraint (4) and the limit
constraints (5) and (6), where all constraints have to hold for all ωt ∈ Ωt
and all t almost sure, taking as given the probability measure P.

At this point we wish to emphasize that the probability measure P may
arise from a Bayesian learning problem. For example, it may be generated
by some perceived law of motion describing the evolution of prices and div-
idends over time containing parameters about which the agent entertains
prior beliefs that are updated in the light of new information. We present

8Adam and Marcet (forthcoming) discuss the strong informational assumptions re-
quired for agents to be able to deduce the market equilibrium mapping Pt(Dt) from the
outset.
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such explicit examples in the latter part of the paper. For the moment, the
learning problem remains ‘hidden’ in the belief structure P .

Optimality Conditions: Since the objective function is concave and
the feasible set is convex and compact in Si

t , the agent’s optimal plan is
characterized by the first order condition

λit + u0(Ci
t)Pt = δEPt

¡
u0(Ci

t+1)(Pt+1 +Dt+1

¢
(7)

where λit ≶ 0 is the sum of the Lagrange multipliers associated with the
constraints (5) and (6). The first order condition involves the expectation of
next period’s marginal utility times next period’s stock payoff Pt+1 +Dt+1.
To emphasize, the optimality condition does not compare the discounted
sum of dividends to the stock price. This is so because agents in this world
engage in speculative trading in the sense of Harrison and Kreps (1978), i.e.,
it is optimal to ‘buy low and sell high’.

To see what it would take to find a discounted sum relationship, note
that one can iterate forward on (7). Assuming that subjective beliefs satisfy
limT→∞ δTEPt (Pt+T ) = 0 one obtains

Pt = EPt

⎡⎣ ∞X
j=1

δj
u0(Ci

t+j+1)

u0(Ci
t)

Dt+1+j +
∞X
j=0

δjλit+1+j

⎤⎦ (8)

Since λit ≷ 0 from the agents’ viewpoint, the stock price can be larger,
equal, or smaller than the agents’ expected discounted sum of dividends.
Only in the special case where the agent believes to be marginal in every
period and every contingency will the agent’s price expectations be implied
by her dividend expectations and the first order conditions. Yet, for small
deviations from RE beliefs there is no reason why the agent should think
that future λ’s in her maximization problem will all be zero with certainty.

In the example of this paper (with homogeneous agents), agents would
know that they are marginal every period, if we assumed that it is common
knowledge that all agents are alike and share the same beliefs. Such common
knowledge implies

EPt

⎡⎣ ∞X
j=0

δjλit+1+j

⎤⎦ = 0, for all i and all t. (9)

so that agents can use equation (8) to compute exactly the relationship
between dividends and prices. Their belief system then must exhibit a sin-
gularity to be consistent with optimal behavior. But absent such knowledge,
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price beliefs of internally rational agents are not implied by their dividend
beliefs.

Equilibrium Asset Pricing Equation: As economic modelers we
know that all agents are alike, therefore know that in equilibrium Si

t = 1
and λit = 0 for all i and t. Equation (7) thus implies that the equilibrium
price satisfies

u0(Ci
t)Pt = δEPt

¡
u0(Ci

t+1)(Pt+1 +Dt+1

¢
(10)

This is the familiar first order condition emerging from a RE analysis of the
model, but now evaluated with subjective beliefs P that do not necessarily
contain a singularity, i.e., where price expectations can deviate from the
expected discounted sum of dividends. The rest of the paper will explore
the pricing implications of this equation when agents learn about price and
dividend behavior.

4.2 Asset Pricing Implications: Analytical Results

We now show analytically how learning helps in qualitatively replicating
Facts 1 to 4 listed in Table 1 above.9 In the interest of deriving analytic
results, we simplify the model along a number of dimensions. First, we
assume investors to be risk neutral (u(C) = C). As argued below, the RE
version of the model then misses all the facts listed in Table 1, allowing us
to clearly highlight the improvements achieved from learning. Second, we
assume that agents know the true dividend process, i.e., EPt (Dt+1) = aDt.
This serves to emphasize that learning about prices is the crucial ingredient
improving the match with the data. Third, we impose an upper bound on
beliefs to insure existence of equilibrium. We relax these assumptions in our
empirical section.

With risk neutrality and RE, equilibrium prices are given by

PRE
t =

δa

1− δa
Dt

The PD ratio is thus constant, implying that returns are approximately as
volatile as dividend growth, that there is no return predictability, and that
the risk premium is zero. Under RE the model is thus completely at odds
with the evidence presented in Table 1.

9We explain why the model delivers Fact 5, the equity premium, in Section 6.
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To analyze the model dynamics under learning, let us define agents’
subjective expectations of stock price growth at time t:

βt ≡ EPt

µ
Pt+1
Pt

¶
. (11)

The equilibrium pricing equation (10) can then be written as

Pt = δ βt Pt + δa Dt (12)

and provided βt ≤ δ−1, the equilibrium price under learning is

Pt =
δaDt

1− δβt
. (13)

For βt = βRE = a this reduces to the RE pricing outcome above. Yet, equa-
tion (13) shows that fluctuations in price expectations βt now contribute to
the fluctuations in actual prices, thereby generating ‘excess volatility’. In-
deed, as long as the correlation between βt and the last dividend innovation
εt is small (as occurs for most updating schemes for βt), we have

V ar

µ
ln

Pt
Pt−1

¶
' V ar

µ
ln
1− δβt−1
1− δβt

¶
+ V ar

µ
ln

Dt

Dt−1

¶
, (14)

If βt fluctuates around values close to but below δ−1, then even small fluctu-
ations in beliefs can have large variance implications. This emerges because
the pricing equation (13) has an asymptote as price growth expectations
approach the inverse of the discount factor.

In general, βt will be updated each period in the light of the newly
available information, as dictated by the probability measure P . We proceed
here by assuming that βt adjusts in the same direction as the last prediction
error. This implies that agents revise price growth expectations upwards
(downwards) if their expectations last period underpredicted (overpredicted)
the stock price growth that was actually realized in this period. Formally,
we consider measures P that imply updating rules of the form:10

∆βt = ft

µ
Pt−1
Pt−2

− βt−1

¶
(15)

10Note that βt is determined from observations up to period t− 1 only. This simplifies
the analysis and it avoids simultaneity of price and forecast determination. This lag in the
information is common in the learning literature. Difficulties emerging with simultaneous
information sets in models of adaptive learning are discussed in Adam (2003).
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for some given functions ft : R→ R with the properties

ft(0) = 0 (16)

ft (·) increasing

The updating rule (15) is consistent with many reasonable belief systems P
that are close to the RE beliefs and we will consider a particular example
of this form in section 4.3 below. The updating rule also nests a range of
standard learning rules typically considered in the literature on adaptive
learning, e.g., least squares learning or constant gain learning rules.

We need to restrict the above learning scheme further so as to guarantee
that expectations remain bounded below the inverse of the discount factor.
In this section we impose a ‘standard projection facility’, which assumes
that agents simply ignore observations that would push the expected price
growth βt beyond some upper bound βU < δ−1. Formally,

∆βt =

(
ft
³
Pt−1
Pt−2
− βt−1

´
if βt−1 + ft

³
Pt−1
Pt−2
− βt−1

´
< βU

0 otherwise
(17)

This projection facility simplifies some of the proofs and has been used in
many learning papers, including Timmermann (1993, 1996), Marcet and
Sargent (1989), Evans and Honkapohja (2001), and Cogley and Sargent
(2008). This completes the description of the learning rule.

The next section analyzes the price dividend dynamics implied by the
pricing equation (13) and the postulated updating rule (15) and (17).

4.2.1 Behavior of the PD Ratio under Learning

The pricing equation (13) shows that the PD ratio is a strictly positive
function of agents’ conditional price growth expectations βt. One can thus
understand the qualitative dynamics of the PD ratio by studying instead the
dynamics of the price growth expectations βt. Equation (13) also implies
that the realized price growth is given by

Pt

Pt−1
= T(βt,∆βt) εt (18)

where

T (β,∆β) ≡ a+
aδ ∆β

1− δβ
(19)

The realized stock price growth is thus larger (smaller) than the fundamental
growth rate aεt, whenever agents have become more (less) optimistic about
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stock price growth compared to the previous period, i.e., whenever ∆β > 0
(∆β < 0). Substituting (18) into the updating equation (15) gives rise to a
second-order stochastic difference equation for βt:

∆βt+1 = ft+1 (T (βt,∆βt)εt − βt) (20)

This equation completely characterizes the equilibrium dynamics of βt (t ≥
1), given initial conditions (D0, P−1), and initial expectations β0. Due to
non-linearities in the T−mapping defined in (19), this equation can not be
solved analytically.

To analyze the dynamics of the price growth expectations βt (and of
the PD ratio) implied by equation (20) we restrict consideration to the
deterministic case with εt ≡ 1. This allows us to focus on the endogenous
stock price dynamics generated by the learning mechanism rather than the
dynamics induced by exogenous dividend disturbances.

The properties of the second order difference equation (20) can then be
illustrated in a 2-dimensional phase diagram for the dynamics of the expec-
tations (βt, βt−1), as shown in Figure 2.

11 The arrows in the figure indicate
the direction in which the vector (βt, βt−1) moves as it evolves according
to equation (20) with εt = 1, and the solid lines indicate the boundaries of
these areas.12 Since we have a difference rather than a differential equation,
we cannot plot the evolution of expectations exactly, but the arrows sug-
gest that the expectations are likely to move in ellipses around the rational
expectations equilibrium (βt, βt−1) = (a, a).

Consider, for example, point A in the diagram. At this point βt is
already below its fundamental value a, but the phase diagram indicates that
expectations will fall further. This shows that there is momentum in price
changes: the fact that agents at point A have become less optimistic relative
to the previous period (βt < βt−1) implies that price growth optimism and
prices will fall further. Expectations move, for example, to point B where
they will start to revert direction and move on to point C, then display
upward momentum and move to point D, thereby displayingmean reversion.
The elliptic movements imply that expectations (and thus the PD ratio) are
likely to oscillate in sustained and persistent swings around the RE value a.

While under RE, the PD ratio is constant, it will tend to oscillate around
the RE value under learning. Such behavior helps generating the observed
volatility and serial correlation of the PD ratio (Facts 1 and 2). Also, accord-
ing to our discussion around equation (14), momentum imparts variability
11Appendix 8.3 explains in detail the construction of the phase diagram.
12The vertical solid line close to δ−1 is meant to illustrate the restriction β < δ−1

imposed by the projection facility.
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Figure 2: Phase diagram illustrating momentum and mean-reversion
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to the ratio 1−δβt−1
1−δβt

and it is likely to deliver more volatile stock returns
(Fact 3). As discussed in Cochrane (2005), a serially correlated and mean
reverting PD ratio gives rise to excess return predictability (Fact 4).

The momentum and mean reverting behavior of growth expectations
(and the PD ratio) can also be stated more formally:

Momentum: If βt ≤ βRE ≡ a and ∆βt > 0, then

∆βt+1 > 0

This equally holds if all inequalities are reversed.

The previous claim follows directly from equation (19), which shows that
∆βt > 0 implies T (βt,∆βt) > a, so that β has to increase further due to
the properties of the updating function ft stated in (16).13 The presence of
∆βt in the determination of actual price growth thus imparts upward and
downward momentum on stock prices around the RE value.

Regarding mean reverting the following result shows that stock prices
eventually move back towards their fundamental (RE) value and do so in a
monotonic way in the absence of dividend growth shocks:14

Mean reversion: If in some period t we have βt > a, then for any η > 0
sufficiently small, there is a finite period t00 > t such that βt00 < a+ η.

Furthermore, oscillations are monotonic in the sense that letting t0

be the first period t00 ≥ t0 ≥ t such that ∆βt0 < 0, then βt is non-
decreasing between t and t0 and it is non-increasing between t0 and
t00.

Symmetrically, if βt < a eventually βt00 > a− η and oscillations are
monotonic.

4.3 Optimal Belief Updating: Least Squares Learning

This section presents specific probability measures P that give rise to updat-
ing schemes satisfying equations (15) and (16). We show how the measure
P can be chosen arbitrarily close to RE beliefs and that agents’ beliefs will
asymptotically converge to the RE outcome, independently of their initial
beliefs.
13This assumes that the projection facility is suffiently ‘loose’ and does not bind.
14See Appendix 8.2 for some additional technical assumptions required for the proof.
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Suppose agents believe that prices and dividends follow a random walk
with drift ∙

logPt/Pt−1
logDt/Dt−1

¸
=

∙
log βP

log βD

¸
+

∙
log εPt
log εDt

¸
(21)

with
(log εPt , log ε

D
t )

0 ∼ N(0,Σ) (22)

The RE outcome is of this form when log βP = log βD = (loga) − s2

2 and
Σ = s2E where E is a 2x2 matrix of with all entries equal to one. Following
Adam and Marcet (forthcoming), we endow agents with a grain of doubt
about the true values of

¡
log βP , log βD,Σ

¢
and assume that this uncertainty

can be described by a Normal-Wishart conjugate prior density over these
parameters:

(log βP , logβD,Σ) ∼ pri

Equations (21) and (22) together with the prior beliefs define a probability
measure P. As shown in Adam and Marcet (forthcoming), recursive least
squares learning equations then describe (up to a log linear approximation)
the evolution of the one-step-ahead price growth expectations

βt = βt−1 +
1

αt

µ
Pt−1
Pt−2

− βt−1

¶
, all t ≥ 1 (23)

αt+1 = αt + 1 (24)

where as in equation (15) we introduce a delay in the way information is
incorporated into expectations to eliminate the simultaneity between prices
and price growth expectations.15

The initial values β0 and 1/α1 in the above updating equations are
thereby functions of the prior density pri. For the RE prior we have β0 = a
and 1/α1 = 0, so that agents believe in an expected price growth of a no
matter how prices have been growing in the past. If one allows for more
dispersed initial priors that remain centered on the RE outcome, then one
has β0 = a and 1/α1 > 0. Such priors place a grain of truth on the RE
outcome but also on outcomes nearby. Price growth realizations are then
used to learn about the true value of the parameters, leading to the kind
of fluctuations in the conditional price growth expectations described in

15Similar equations describe the evolution of dividend growth expectations. Defin-
ing βDt ≡ EP

t [Dt+1/Dt] and using a similar information lag, we have βDt = βDt−1 +
1
αt

Dt−1
Dt−2 − βDt−1 .
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equations (23) and (24). As the belief system P associated with such more
dispersed prior densities converges in distribution to the RE beliefs, one has
that 1/α1 → 0. Small values for the so-called ‘gain’ parameter 1/α1 thus
indicate small deviations from RE priors.

Note that the updating equations (23) and (24) deliver a pure data driven
ordinary least squares (OLS) estimate for 1/α1 = 1, which amounts to im-
posing an ‘uninformative prior’ about stock price growth. The gain para-
meter should thus lie in the interval 1/α1 ∈ [0, 1] with the lower bound
indicating the RE prior, which places no weight on price growth data, and
the upper bound indicating the pure OLS estimate, which places all weight
on the data and none on prior beliefs. In our empirical applications we will
consider beliefs with values for 1/α1 very close to zero.

We now explore the asymptotic behavior of beliefs if agents use the
updating scheme (23) and (24) and if equilibrium prices under learning are
given by equation (13). For convenience we assume that agents know the
true law of motion for the dividend process, i.e., EPt [Dt+1] = aDt for all t.16

We also allow here for dividend uncertainty (εt ≷ 1):

Convergence of OLS If βU > βRE , the learning scheme (23)-(24) satis-
fies

βt → a almost surely as t→∞
for any initial conditions 0 < 1/α1 ≤ 1, β0 ∈

¡
0, βU

¢
.

The proof is stated in Appendix 8.6 and requires some mild additional
technical assumptions. Note that we have a global convergence result, while
many results in the literature on self-referential learning are about local
convergence.

The convergence result above is useful because it shows that beliefs do
not stay away from the fundamental value a forever, even in a stochastic
model and even when the gain 1/α1 is very small to start with and converges
to zero. Our limiting result implies, however, that asset price volatility as-
ymptotically decreases, which is counterfactual, see Figure 1. The empirical
application in the next section, therefore, adopts a ‘constant gain’ learning
algorithm, which assumes that αt = α in equation (23) for some value for α
close to zero. The model then does not converge to the RE outcome asymp-
totically but tends to fluctuate around the limit of the least squares learning
outcome a with the fluctuations been smaller the smaller is α.17

16As is well known, agents will learn all about an exogenously evolving stochastic
process, if their prior beliefs contain a ‘grain of truth’, as is the case in the present setting.
17Constant gaint learning mechanism can be microfounded by slightly different systems
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5 Baseline Model and Testing Procedure

The previous section explained how the introduction of learning qualitatively
improves the ability of the model to match the data. This section performs
a formal test of the quantitative model performance. It turns out that
even under risk neutrality, learning improves the quantitative performance
substantially relative to the rational expectations version, although not all
facts listed in Table 1 can be replicated.18 We therefore consider in this
section a model with moderate degrees of risk aversion, which can provide
a remarkably good match of all the facts described in Table 1. We now
introduce our preferred baseline model and testing procedure.

5.1 Learning under Risk Aversion

We consider investors with a CRRA utility function

u(C) =
C1−γ

1− γ

with γ ≥ 0 and assume that each investor has an additional non-tradable in-
come stream given by φDt. For φ > 0 sufficiently large, subjective consump-
tion growth is well approximated by Ct/Ct+1 ≈ Dt/Dt+1, independently of
the subjective stockholding plans of the investor. This greatly facilitates
the analysis because for large φ the asset pricing equation (10) can then be
written as the familiar equation:19

Pt = δEPt

µµ
Dt

Dt+1

¶γ

(Pt+1 +Dt+1)

¶
(25)

Under RE the equilibrium stock price is

PRE
t =

δβRE

1− δβRE
Dt (26)

where

βRE = a1−γe−γ(1−γ)
s2

2 (27)

= Et

Ãµ
Dt

Dt+1

¶γ PRE
t+1

PRE
t

!
(28)

of beliefs P where agents believe the random variables logβP and logβD in (21) to follow
a unit root process.
18See the working paper version for details: Adam, Marcet and Nicolini (2008).
19While we equalize consumption and dividend growth volatility in this section, section

6.2 considers the case where dividend volatility exceeds consumption volatility.
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As in the case with risk neutrality, the price dividend ratio under RE is
constant and the model predictions are at odds with the facts listed in Table
1.

When agents are only internally rational, but know the dividend process,
equation (25) implies:

Pt = δβtPt + δEt

Ã
Dγ
t

Dγ−1
t+1

!
(29)

where βt is agents’ subjective conditional expectations of risk-adjusted stock
price growth at t

βt ≡ EPt

µµ
Dt

Dt+1

¶γ Pt+1
Pt

¶
(30)

Obviously, agents have rational expectations beliefs if βt = βRE for all t.
We assume agents update their estimate about (risk-adjusted) stock price

growth according to

βt = βt−1 +
1

α

∙µ
Dt−2
Dt−1

¶γ Pt−1
Pt−2

− βt−1

¸
(31)

for some small constant gain 1/α, as discussed in section 4.3.
For γ > 1, the variance of realized risk-adjusted stock price growth un-

der RE increases with γ.20 Thus, even moderate risk aversion coefficients are
likely to generate more volatility in price growth expectations and, there-
fore, of actual prices under learning. Risk aversion thus produces additional
volatility under RE and this improves the learning model’s ability to match
the facts considered in Table 1.

As in the risk-neutral case we need to impose a projection facility to
insure that βt < δ−1. The projection facility described in (17) is convenient
to derive analytical results but has two shortcomings. First, it introduces a
discontinuity in the simulated path and thereby unnecessarily complicates
numerical searches over the parameter space; second, we are not aware of
a complete set of beliefs P for which rational updating implies that some
observations are simply disregarded. Therefore, we assume instead that for
high values of βt further increases in βt are dampened in a smooth and

20The variance of risk adjusted stock price growth under rational expectations is

V AR
Dt−2

Dt−1

γ PRE
t−1

PRE
t−2

= a2(1−γ)e(−γ)(1−γ)
s2

2 (e(1−γ)
2s2 − 1)

This variance reaches a minimum for γ = 1 and it increases with γ for γ ≥ 1.
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continuous fashion. In other words, we assume that individuals start to
downplay observations that would entail too high an expected growth of
stock price rather than completely ignoring these observations above some
threshold. The dampening still insures that βt < βU < δ−1 but a continuous
projection facility also preserves differentiability of the solution with respect
to model parameters values and thereby facilitates the estimation in section
6. Furthermore, if P is generated from an initial prior belief on the growth
rate of stock prices that is truncated at some value βU , rational agents would
equally downplay observations of the growth rate in such a way. Details on
the continuous projection facility are described in appendix 8.5.5.

5.2 Baseline Testing Procedure

This section describes and discusses our baseline procedure for fitting and
testing the baseline model from the previous section. Technical details are
described in appendix 8.5.

The parameter vector of the baseline model is θ ≡ (δ, γ, α, a, s), where
δ denotes the discount factor, γ the coefficient of relative risk aversion, 1/α
the agents’ gain parameter, and a the mean and s the standard deviation of
dividend growth.

We fix three of these parameters up-front. To illustrate that the model
can match the volatility of stock prices for levels of risk aversion that are
generally considered to be ‘low’ within the asset pricing literature, we simply
fix γ = 5. We also fix the mean and standard deviation of the dividend
growth process to the U.S. values reported in Table 1.

This leaves us with two free parameters (δ, α) and the following eight
remaining sample moments reported in table 1:

bS ≡ ³ bE(rs), bE(PD), bσrs, bσPD,bρPDt,−1,bc52, bR25, bE(rb)´0 (32)

Our aim is to show that there are parameter values (δ, α) that make the
model consistent with these eight moments.21

The usual practice in calibration exercises is to fix δ and/or α to match
some additional moments exactly and to use the remaining moments to test
the model. Yet, many of the reported asset pricing moments are estimated

21Strictly speaking, many elements of S are not sample moments but functions of sample
moments. For example, the R-square coefficient is a highly non-linear function of moments.
This generates some technical problems, which are discussed in appendix 8.5. It would be
more precise to refer to S as ‘sample statistics’, as we do in the appendix. For simplicity
we avoid this terminology in the main text of the paper.
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very imprecisely. This is shown in Table 2 below, which reports an estimate
of the standard deviation of each sample moment in the column labeled
‘US Data std’. Given the substantial uncertainty about the true value of
these moments, matching any of them exactly appears arbitrary because
one obtains rather different parameter values depending on which moment
is chosen.22 Therefore, we use a version of the method of simulated moments
(MSM) to choose values for (δ, α) that globally fit all eight moments in bS.

To find the best fit we proceed as follows. Let eS(θ) denote the moments
implied by the model at some parameter value θ. As in the method of
simulated moments MSM the chosen parameters bδ, bα are defined by³bδ, bα´ ≡ argmin

δ,α

h bS − eS(θ)i0 W h bS − eS(θ)i (33)

for some positive definite weighting matrixW that may be a function of the
data.

For our baseline calibration procedure we choose W to be the diagonal
matrix with entry 1/bσ2Si in the i-th element of the diagonal, where bσSi is the
estimated standard deviation of the i-th element of bS, reported in column
3 of Table 2. Appendix 8.5 shows consistent estimates for bσSi and it shows
that the t-ratios bSi − eSi(θ0)bσSi (34)

have a standard normal asymptotic distribution if the model and the para-
meter values θ0 are true. The baseline testing procedure will check whether
the t-ratios are less than 2 or 3 when we compute the t−ratios in (34) witheSi(bθ) instead of eSi(θ0).

This baseline testing procedure is relatively simple and lies somewhere in
between standard calibration approaches and MSM estimation. It resembles
MSM in that we find the parameter values that best match all remaining
moments globally. But unlike MSM we test moments one by one, since the
model is very simple and not designed to pass a strict test of goodness of fit.
Furthermore, we use a diagonal W instead of the asymptotically efficient
weighting matrix.

Our baseline approach also differs from standard calibration in that we
use data-implied standard deviations bσSi in the t-ratios while standard cal-
ibration uses model-implied standard deviation for each moment. We find

22Related to this is the observation that the value of the moments varies strongly with
the precise sample period used. For example, in our sample we find E(PD) = 113.2, but
using data up to 1996, we find a value of 99 only.
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a number of problems with using model-implied standard deviations. First,
the researcher has an incentive to choose versions of her preferred models
that drive up standard deviations, since this will artificially increase the
denominator of the t-ratio for that model. Using data-implied bσSi keeps
the criterion of fit constant across alternative models and thereby allows for
meaningful model comparisons. Second, in our model the risk free interest
rate is constant, so that the model-implied standard deviation of the mean
interest rate is bσE(rb) = 0. Using model-implied standard deviations would
then require to match the average risk free rate exactly. But the data sug-
gests that this moment is known very imprecisely, see Table 2, so matching
it exactly appears arbitrary. For these reasons we prefer to use data-implied
standard deviations in the t-ratios as our baseline.

We wish to emphasize that our results do not depend on these details.
In section 6.2 we consider the robustness of our findings to several variations
of this baseline testing procedure.

6 Quantitative Model Performance

6.1 Baseline Results

We now discuss the quantitative model performance for the baseline ap-
proach described in the previous section.

Results are summarized in Table 2 below. The second column reports the
asset pricing moments ( bSi) from Table 1 that we seek to match. The third
column lists the estimated standard deviation (bσSi) for each of the sample
moments. Clearly, some of these moments can be estimated only imprecisely
due to the large volatility present in the data. The fourth column reports
the moments implied by our estimated model and the last column reports
the t-ratios.

The empirical performance of our estimated learning model is remark-
able. For all moments, the t-ratios are well below 2. Clearly, the point
estimates of some data moments are not exactly in line with the model
implied moments, but this tends to occur for moments that, in the short
sample, have a large variance and on which the estimation procedure ap-
propriately places little weight. For example, the model implies an average
risk-free interest rate that is more than twice as large as the point estimate
in the data. Yet, with the standard deviation of bE(rb) being fairly large,
one nevertheless obtains a low t-ratio.

The bottom of the table reports the estimated parameter values of the
learning model. The estimated gain parameter 1/α is small, reflecting the
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tendency of the data to give large (but less than full) weight to the RE
prior mean about stock price growth. The estimated gain value implies that
in the initial period the RE prior receives a weight of approximately 99.5%
and the first quarterly price growth observation a weight of about 0.5% only.
The data prefer such a small gain value because higher gain values cause
beliefs and the model-implied prices to become much more volatile than in
the data.

The estimate for the time discount factor δ is slightly larger than one.
Economic growth and risk aversion nevertheless cause agents to discount the
future, so that the real interest rate remains positive and the consumers’
problem well defined.23 We impose the restriction δ ≤ 1 in the robustness
section below.

Quarterly Statistics US Data Model
std t-ratio

Mean real stock return E(rs) 2.41 0.45 2.26 0.34
Mean real bond return E(rb) 0.18 0.23 0.40 -0.95
Mean PD ratio E(PD) 113.20 15.15 110.46 0.18
Std. dev. stock return σrs 11.65 2.88 14.77 -1.08
Std. dev. PD ratio σPD 52.98 16.53 75.41 -1.36
Autocorrel. PD ratio ρPD,−1 0.92 0.02 0.94 -0.84
Coeff. excess ret. regression c25 -0.0048 0.002 -0.0059 0.5622
R2 excess ret. regression R25 0.1986 0.0828 0.2413 -0.5151

Parameters: bδ = 1.000375, 1/bα = 0.00633
Table 2: Moments and parameters.

Baseline model and baseline calibration

To show that our model also passes an ‘eyeball test’, we report in Figure 3
three ‘typical’ realizations of the PD ratio from the estimated baseline model
for the same number of quarters as shown in Figure 1 for the data. The stock
PD ratio in our simulations has the tendency to display sustained price
increases that are followed by rather sharp price reductions and prolonged
periods of low prices, similar to the behavior of the data shown in Figure
23Equations (26) and (27) show that a finite asset price under RE is obtained whenever

δ−1 > βRE . Since risk aversion and growth can bring βRE below 1, this allows for δ > 1.
For a discussion, see Kocherlakota (1990).
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1. The figure illustrates that the oscillations around the RE, suggested by
the phase diagram shown in Figure 2, are very persistent and take the form
of rather low-frequency movements with occasional sharp outbreaks and
reversals to the top.

We now briefly discuss why our model is also able to generate a sizable
risk premium for stocks. Surprisingly, the model generates an ex-post risk
premium for stocks even when investors are risk neutral (γ = 0). To under-
stand this feature, note that the realized gross stock return between period
0 and period N can be written as the product of three terms

NY
t=1

Pt +Dt

Pt−1
=

NY
t=1

Dt

Dt−1| {z }
=R1

·
µ
PDN + 1

PD0

¶
| {z }

=R2

·
N−1Y
t=1

PDt + 1

PDt| {z }
=R3

.

The first term (R1) is independent of the way prices are formed, thus cannot
contribute to explaining the emergence of an equity premium. The second
term (R2) could potentially generate an equity premium but is on average
below one in our simulations, while it is slightly larger than one under RE.
The equity premium in the learning model must thus be due the last com-
ponent (R3). This term is convex in the PD ratio, so that a model that
generates higher volatility of the PD ratio (but the same mean value) will
also give rise to a higher equity premium. Therefore, because our learning
model generates a considerably more volatile PD ratio, it also gives rise to
a larger ex-post risk premium.

In summary, the learning model fits the data very well: all eight moments
from Table 1 can be matched by just two free parameters and the simulated
PD series are comparable to those of Figure 1. We find this result remark-
able. We employed one of the simplest versions of the asset pricing model
and combined with one of the simplest available learning mechanisms which
adds only one free parameter, namely the gain parameter 1/α. Furthermore,
agents’ beliefs are found to be close to RE belief. The strict RE version of
the model, however, is far from matching any of the facts discussed here.

6.2 Robustness

This section shows that the quantitative performance of the model is robust
to a number of deviations from the assumptions about the baseline model
and testing procedure imposed in section 5. We consider one deviation at a
time.
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Figure 3: Simulated PD ratio, estimated constant gain model (Table 2)
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Learning about dividends. For simplicity we assumed that agents
know the true process for dividends. Also, learning about dividends has
been considered previously in other papers. In appendix 8.4 we describe
a model with learning about prices and dividends. Although the analysis
is slightly more involved, the basic properties of the model do not change.
Table 3 below shows the results and confirms that the parameter estimates
are largely unchanged and that the model fit remains very good.

Consumption data. Throughout the paper we made the simplifying
assumption Ct/Ct−1 = Dt/Dt−1. We calibrated this process to dividend
data since the variance of dividends has to be brought out when studying
stock price volatility. Since actual consumption growth is much less volatile
than dividend growth, this is a somewhat unsatisfactory aspect. We now
calibrate the volatility of the consumption and dividend processes separately
to the data.24 While the dividend process remains as before, we set

Ct+1

Ct
= aεct+1 for ln εct ∼ iiN(−s

2
c

2
; s2c)

The presence of two shocks modifies the equations for the RE version of the
model in a well known way and we do not describe it in detail here. We
calibrate the consumption process following Campbell and Cochrane (1999),
i.e., set sc = s

7 and ρ(εct , εt) = .2.25

The quantitative results are reported in table 3. The match of the risk-
free rate now worsens and the corresponding t-ratio falls outside the 95%
confidence interval. Equivalently, one could say that the model now mar-
ginally fails in matching the risk premium puzzle. Clearly, this occurs be-
cause the agents’ stochastic discount factor is now less volatile. For a number
of reasons, we do not wish to over-interpret this deterioration in the model
fit. First, the rejection is marginal, the highest t-ratio is still remains below
3. Second, the equity premium is not the main focus of this paper and the
model continues to perform well along the other dimensions of the data.
Finally, to a RE fundamentalist, who might dismiss models of learning from
the outset as being ‘non rigorous because they can always match any data’,
this finding illustrates that models of learning can be rejected by the data
in the same way as RE models.
24For the learning model to be consistent with internal rationality this requires assuming

that the process for income follows a different process than that for dividends, that agents
have rational expectations about this additional process, and that dividend income is
again a minor part of agents’ total income.
25We take these ratios and values from table 1 in Campbell and Cochrane (1999), which

is based on a slightly shorter sample than the one used in this paper.
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Restricting δ ≤ 1 As explained before, the estimated value of the
discount factor is larger than one in the baseline case. Although this does not
generate any inconsistency in our model or even under RE, some economists
may feel uncomfortable with discount factors larger than one. Table 3 shows
that the model behaves almost as well when the constraint δ ≤ 1 is imposed.

US Data Learning on Div. Ct/Ct−1 6= Dt/Dt−1 δ ≤ 1
Statistic t-ratio t-ratio t-ratio

E(rs) 2.41 2.20 0.48 2.01 0.89 2.26 0.34
E(rb) 0.18 0.43 -1.06 0.74 -2.45 0.44 -1.11

E(PD) 113.20 111.58 0.11 111.43 0.12 109.82 0.22
σrs 11.65 14.22 -0.89 13.63 -0.69 14.55 -1.00
σPD 52.98 74.16 -1.28 73.92 -1.27 74.60 -1.31

ρPD,−1 0.92 0.94 -0.95 0.94 -0.83 0.94 -0.81
c25 -0.0048 -0.0054 0.2844 -0.0068 0.9950 -0.0059 0.5344
R25 0.1986 0.2133 -0.1777 0.1588 0.4804 0.2443 -0.5516

Parameters:bδ 1.000075 1.010051 1
1/bα 0.0061 0.0082 0.0063

Table 3: Robustness to model choice

Model-generated standard deviations We now consider deviations
from the baseline testing procedure. We first use t-ratios using a model-
implied standard deviation of the moments bσSi , closer to standard practice
in calibration exercises. For this case δ is chosen to match bE ¡rb¢ exactly
since the model implied standard deviation is bσE(rb) = 0. Clearly, the cor-
responding t−ratio is undefined. Table 4 below reports the fit of the model.
Although there is some worsening relative to the baseline findings, the over-
all fit remains very good.

Full Weighting matrix A classical econometrician might complain
that using a diagonal weighting matrix W as in (33) yields consistent but
inefficient estimates of δ, α. We now use an efficient weighting matrix W
derived from standard MSM results. The procedure is described in appendix
8.5.2. Table 4 below shows that the fit of the model worsens, some of the
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t-ratios approach the rejection area, but the overall fit remains surprisingly
good

Overall, the results in this section show that our quantitative results
are robust to many deviations from the baseline model and baseline testing
procedure.

US Data Model σ̂Si Full matrix
Statistic t-ratio t-ratio

E(rs) 2.41 2.25 0.66 1.61 1.77
E(rb) 0.18 0.18 – 0.08 0.47

E(PD) 113.20 114.34 -0.06 137.58 -1.61
σrs 11.65 15.36 -1.41 10.99 0.23
σPD 52.98 76.24 -2.02 67.19 -0.86

ρPD,−1 0.92 0.94 -0.69 0.96 -1.97
c25 -0.0048 -0.0062 1.6977 -0.0056 0.4006
R25 0.1986 0.2376 -0.7887 0.3646 -2.0047

Parameters:
δ 1.002526 1.003587

1/α1 0.0063 0.0045

Table 4: Robustness to testing procedure

7 Conclusions and Outlook

A very simple consumption based asset pricing model is able to quanti-
tatively replicate a number of important asset pricing facts, provided one
slightly relaxes the assumption that agents perfectly know how stock prices
are formed in the market. We assume that agents formulate their doubts
about market outcomes using a consistent set of subjective beliefs about
prices which is close to, but not equal to, the RE prior beliefs typically
assumed in the literature. Agents then optimally learn about the equilib-
rium price process using past price observations and this gives rise to a
self-referential model of learning that imparts momentum and mean rever-
sion behavior into the price dividend ratio. As a result, sustained departures
of asset prices from their fundamental value emerge, even though all agents
act rationally in the light of their beliefs.

Given the difficulties documented in the empirical asset pricing literature
in accounting for these facts under RE, our results suggest that models
of learning may be economically more relevant than previously thought.
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Indeed, the most convincing case for models of learning can be made by
explaining facts that appear ‘puzzling’ from the RE viewpoint, as we attempt
to do in this paper.

The fact that stock prices can deviate for a long time from their funda-
mental value in a way that matches the data, even in a model with rational
behavior, near-RE expectations and no frictions, is likely to have a wide
range of practical implications that are worth exploring in future work. As
a result of our findings, asset market and banking regulations could be seen
in a rather different light. Accounting rules requiring that institutions mark
assets to market appear arbitrary, if prices do not reflect the true asset
value but rather the optimism or pessimism of investors about future capi-
tal gains. The effects of shortselling constraints on market outcomes might
equally have to be reassessed: on the one hand such constraints could pre-
vent agents from leveraging their (optimistic or pessimistic) expectations,
on the other hand they could prevent useful speculation against the pre-
vailing market sentiment. Finally, the theory of portfolio choice would have
to be generalized to take into account the state of market expectations in
addition to the state of fundamentals, something that appears familiar to
practitioners for quite some time already.
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8 Appendix

8.1 Data Sources

Our data is for the United States and has been downloaded from ‘The Global
Financial Database’ (http://www.globalfinancialdata.com). The period cov-
ered is 1925:4-2005:4. For the subperiod 1925:4-1998:4 our data set corre-
sponds very closely to Campbell’s (2003) handbook data set available at
http://kuznets.fas.harvard.edu/~campbell/ data.html.

In the calibration part of the paper we use moments that are based on
the same number of observations. Since we seek to match the return pre-
dictability evidence at the five year horizon (c25 and R

2
5) we can only use data

points up to 2000:4. For consistency the effective sample end for all other
moments reported in table 1 has been shortened by five years to 2000:4. In
addition, due to the seasonal adjustment procedure for dividends described
below and the way we compute the standard errors for the moments de-
scribed in appendix 8.5, the effective starting date was 1927:2.

To obtain real values, nominal variables have been deflated using the
‘USA BLS Consumer Price Index’ (Global Fin code ‘CPUSAM’). The monthly
price series has been transformed into a quarterly series by taking the index
value of the last month of the considered quarter.

The nominal stock price series is the ‘SP 500 Composite Price Index
(w/GFD extension)’ (Global Fin code ‘_SPXD’). The weekly (up to the end
of 1927) and daily series has been transformed into quarterly data by taking
the index value of the last week/day of the considered quarter. Moreover,
the series has been normalized to 100 in 1925:4.

As nominal interest rate we use the ‘90 Days T-Bills Secondary Market’
(Global Fin code ‘ITUSA3SD’). The monthly (up to the end of 1933), weekly
(1934-end of 1953), and daily series has been transformed into a quarterly se-
ries using the interest rate corresponding to the last month/week/day of the
considered quarter and is expressed in quarterly rates, i.e., not annualized.

Nominal dividends have been computed as follows

Dt =

µ
ID(t)/ID(t− 1)

IND(t)/IND(t− 1) − 1
¶
IND(t)

where IND denotes the ‘SP 500 Composite Price Index (w/GFD extension)’
described above and ID is the ‘SP 500 Total Return Index (w/GFD exten-
sion)’ (Global Fin code ‘_SPXTRD ’). We first computed monthly dividends
and then quarterly dividends by adding up the monthly series. Following
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Campbell (2003), dividends have been deseasonalized by taking averages of
the actual dividend payments over the current and preceding three quarters.

8.2 Proof of mean reversion

To prove mean reversion for the general learning scheme of (17) we need the
following additional technical assumptions on the updating function ft:

Assumption 1 There is a η > 0 such that ft is differentiable in the interval
(−η, η) for all t and, letting

Dt ≡ inf
∆∈(−η,η)

∂ft(∆)

∂∆
,

we have ∞X
t=0

Dt =∞

This is satisfied by all the updating rules considered in this paper and by
most algorithms used in the stochastic control literature. For example, it is
guaranteed in the OLS case where Dt = 1/(t+α1) and in the constant gain
where Dt = 1/α for all t. If the assumption would fail and

P
Dt <∞, then

beliefs would get ‘stuck’ away from the fundamental value simply because
updating of beliefs ceases to incorporate new information for t large enough.
In this case, the growth rate is a certain constant but agents believe it is a
different constant and agents make systematic mistakes forever. It is unlikely
that such a scheme with

P
Dt < ∞ would arise as optimal behavior from

any system of beliefs that puts a grain of truth on the actual value of the
growth rate for stock prices.

Assumption 2 The learning rule satisfies ft(−z) ≥ −z for all z ∈
£
0, βU

¤
and all t.

Since βt ≥ βt−1 + ft (−βt−1) Assumption 2 insures that βt, Pt ≥ 0 for
all t, i.e., that agents predict future stock prices to be non-negative. Again,
OLS and constant gain learning satisfy this assumption for α1 ≥ 1, as is
assumed throughout the paper. Therefore we have 0 ≤ βt ≤ βU for all t.

We start proving mean reversion for the case βt > a. Fix η > 0 small
enough that η < min(η, (βt − a)/2) where η is as in assumption 1.
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We first prove that there exists a finite t0 ≥ t such that

∆βt ≥ 0 for all et such that t < et < t0, and (35)

∆βt0 < 0 (36)

To prove this, choose ² = η
¡
1− δβU

¢
. It cannot be that ∆βt ≥ ² for allet > t, since � > 0 and this would contradict the bound βt ≤ βU . Therefore

∆βt < ² for some finite t ≥ t. Take t ≥ t to be the first period where
∆βt < ².

There are two possible cases: either i) ∆βt < 0 or ii) ∆βt ≥ 0.
In case i) we have (35) and (36) hold if we take t0 = t.
In case ii) βt can not decrease between t and t so that

βt ≥ βt > a+ η

Furthermore, we have

T (βt,∆βt) = a+
∆βt
1− δβt

< a+
²

1− δβt

< a+
²

1− δβU
= a+ η

where the first equality follows from the definition of T , the first inequality
uses ∆βt < ² and the second inequality that βt < βU and the last equality
follows from the choice for ². The previous two relations imply

βt > T (βt,∆βt)

This together with (20), εt ≡ 1 and the fact that ft is increasing gives

βt + ft+1 (T(βt,∆βt)− βt) < βt < βt < βU

so that the projection facility does not apply at t+ 1. Therefore

∆βt+1 = ft+1 (T (βt,∆βt)− βt) < 0

and in case ii) we have that (35) and (36) hold for t0 = t+ 1.
This shows that (35) and (36) hold for a finite t0. Now we need to show

that from then on beliefs decrease and, eventually, they go below a+ η.
Consider η as defined above. First, notice that given any j ≥ 0, if

∆β
t0+j

< 0 and (37)

β
t0+j

> a+ η (38)
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then

∆βt0+j+1 = ft0+j+1

µ
a+

∆βt0+j
1− δβt0+j

− βt0+j

¶
< ft0+j+1

¡
a− βt0+j

¢
(39)

< ft0+j+1 (−η) ≤ −ηDt0+j+1 ≤ 0 (40)

where the first inequality follows from (37), the second inequality from (38)
and the third from the mean value theorem, η > 0 andDt0+j+1 ≥ 0. Assume,
towards a contradiction, that (38) holds for all j ≥ 0. Since (37) holds for
j = 0, it follows by induction that ∆βt0+j ≤ 0 for all j ≥ 0 and, therefore,
that (40) would hold for all j ≥ 0 hence

βt0+j =

jX
i=1

∆βt0+i + βt0 ≤ −η
jX

i=1

Dt0+i + βt0

for all j > 0. Assumption 1 above would then imply βt →−∞ showing that
(38) can not hold for all j. Therefore there is a finite j such that βt0+j will
go below a+ η and β is decreasing from t0 until it goes below a+ η.

For the case βt < a − η we need to make the additional assumption
that βU > a. Then, choosing ² = η we can use a symmetric argument to
construct the proof.

8.3 Details on the phase diagram

The second order difference equation (20) with εt ≡ 1, which describes
the deterministic evolution of beliefs, allows to construct the directional
dynamics in the

¡
βt, βt−1

¢
plane shown in Figure 2. Here we show the

algebra leading to the arrows displayed in this figure. For clarity, we define
x0t ≡ (x1,t, x2,t) ≡

¡
βt, βt−1

¢
, whose dynamics are given by

xt+1 =

Ã
x1,t + ft+1

³
a+

aδ(x1,t−x2,t)
1−δx1,t − x1,t

´
x1,t

!
The points in Figure 2 where there is no change in each of the elements of
x are the following: we have ∆x2 = 0 at points x1 = x2, so that the 45o line
gives the point of no change in x2, and ∆x2 > 0 above this line. We have
∆x1 = 0 for x2 = 1

δ −
x1(1−δx1)

aδ , this is the curve labelled ”βt+1 = βt” in
Figure 2 and we have ∆x1 > 0 below this curve. So the zeroes for ∆x1 and
∆x2 intersect are at x1 = x2 = a which is the REE and, interestingly, at
x1 = x2 = δ−1 which is the limit of rational bubble equilibria. These results
give rise to the directional dynamics shown in figure 2.
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8.4 Model with learning about dividends

This section considers agents who learn to forecast future dividends in addi-
tion to forecast future price. We make the arguments directly for the general
model with risk aversion from section 5. Equation (25) then becomes

Pt = δEPt

µµ
Dt

Dt+1

¶γ

Pt+1

¶
+ δEPt

Ã
Dγ
t

Dγ−1
t+1

!
(41)

Under RE one has

Et

Ã
Dγ
t

Dγ−1
t+1

!
= Et

Ãµ
Dt+1

Dt

¶1−γ!
Dt

= Et

³
(aε)1−γ

´
Dt

= βREDt

Definining the (risk-adjusted) dividend growth forecast as

βDt ≡ EPt

Ãµ
Dt+1

Dt

¶1−γ!
agents’ forecast of the latter term in (41) is given by

EPt

Ã
Dγ
t

Dγ−1
t+1

!
= βDt Dt

Under the belief specification described in section 4.3, agents’ conditional
expectations for dividend growth evolve according to

βDt = βDt−1 +
1

αt

Ãµ
Dt−1
Dt−2

¶1−γ
− βDt−1

!
(42)

where the gain sequence 1/αt is the same as the one used for updating the
estimate for risk-adjusted stock price growth βt, which continues to evolve
according to equation (31). As with stock price growth expectations, we
center initial beliefs for dividend growth at the RE outcome, which implies

βDt = βRE .

With these assumptions, equation (41) implies that the equilibrium price is
given by

Pt =
δβDt
1− δβt

Dt

37



Since βDt → a for the decreasing gain case, and since βDt will fluctuate closely
around a for small but constant gain values, the pricing implications with
dividend learning are very similar those derived for the case where agents
have RE about the dividend process.

8.5 Details of the testing procedure

This appendix describes details of our baseline testing approach and gives
estimators of the standard deviation of the sample statistics reported in
table 2.

8.5.1 Baseline estimation and testing

Here we show that the estimator defined in (33) is consistent and we derive
the asymptotic distribution for the moments of the model we report.

Let N be the sample size, (y1, ...,yN) the observed data sample, with yt
containingm variables. In the text we talked about "moments" as describing
all statistics to be matched in (32) even though some of these statistics are
not proper moments, they are only functions of moments. In this appendix
we properly use the term "statistic" as possibly different from "moment".

We consider sample statistics S(cMN ) where S : Rq → Rs is a statistic
function that maps sample moments cMN into the considered statistics. The
moments are defined by cMN ≡ 1

N

PN
t=1 h(yt) for a given function h : R

m →
Rq. The explicit expressions for h(·) and S(·) for our particular application
are stated in 8.5.3 below.

Since we match these statistics instead of proper moments this is not an
immediate application of standard MSM, so we adapt standard proofs to
derive the asymptotic theory results that are needed.

In the main text we have denoted the observed sample statistics as bS ≡
S(cMN). Let yt(θ) be the series generated by the model for parameter values
θ and some realization of the underlying shocks, let θ0 be the true parameter
value, M0 ≡ E [ h(yt(θ0)) ] are the true moments, M(θ) ≡ E [ h(yt(θ)) ] are
the true moments for parameter values θ at the stationary distribution for
yt(θ) and eS(θ) ≡ S(M(θ)) are the true statistics when the model parameter
is θ.

Using standard results from MSM, the estimates bδ, bα defined by (33)
converge asymptotically to their true values if the following conditions hold:
y is stationary and ergodic, the effect of initial conditions dies down suffi-
ciently quickly, W converges almost surely to a positive definite matrix fW

38



as the sample grows, andh eS(θ0)− eS(θ)i0 fW h eS(θ0)− eS(θ)i = 0
holds only for θ = θ0, i.e., the set of statistics uniquely identifies θ0. The
latter identification assumption typically requires the number of parameters
to be less than the number of statistics s.

Denote by M j
0 the j-th autocovariance of the moment function at the

true parameter, that is

M j
0 ≡ E[ [h(yt(θ0))−E(h(yt(θ0))] [h(yt−j(θ0))− E(h(yt−j(θ0))]

0 ]

Define

Sw ≡
∞X

j=−∞
M j
0 (43)

we have the following

Result 1: Suppose that in addition to the assumptions required for consis-
tency we have

• Sw <∞,

• a consistent estimator bSw,N such that bSw,N → Sw a.s. asN →∞,
and

• S is continuously differentiable at M0.

Then, defining

bΣS,N ≡ ∂S(MN)

∂M 0
bSw,N ∂S(MN)

0

∂M

and letting bσSi denote the square root of the i-th diagonal element of
1
N
bΣS,N , we have thatbSi − Si(M0)bσSi → N (0, 1) in distribution as N →∞. (44)

for each i = 1, ..., s whenever the model is true.

Proof. The proof uses standard arguments, we just give an outline. The
central limit theorem implies

√
N
hcMN −M0

i
→ N (0, Sw) in distribution
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The mean value theorem implies
√
N [S(MN)− S(M0)] → N (0,ΣS) in distribution for (45)

ΣS =
∂S(M0)

∂M 0 Sw
∂S 0(M0)

∂M
(46)

Since cMN →M0 a.s. we have bΣS,N → ΣS a.s. which implies (44).
Therefore, the denominator of (34) is found by combining an estimator

of Sw with
∂S(MN )
∂M 0 to obtain the variance-covariance matrix of the statisticsbΣS,N . Consistent estimates bSw,N can be obtained from the data by using

the Newey West estimator, which substitutes the expectations in (43) by
the sample means, truncates the infinite sum and gives decreasing weight
to the sample autocovariances at longer lags. This is standard and we do
not describe the details here. An explicit expression for ∂S/∂M 0 for the
statistics (32) that we match is given in appendix 8.5.4. Notice that bΣS,N
can be formed using data only, the model or its parameter estimates do not
enter the computation.

There are various ways to compute the moments of the model eS(θ) for
a given θ ∈ Rn.We use the following Monte-Carlo procedure. Let ωi denote
a realization of shocks drawn randomly from the known distribution that
the underlying shocks are assumed to have and

¡
y1(θ, ωi), ...yN (θ, ωi)

¢
the

random variables corresponding to a history of length N generated by the
model for shock realization ωi and parameter values θ. Furthermore, let

MN(θ, ω
i) ≡ 1

N

NX
t=1

h(yt(θ, ω
i))

denote the model moment for realization ωi. We set the model statisticseS(θ) equal to
1

K

KX
i=1

S(MN (θ, ω
i))

for largeK. In other words, eS(θ) is an average across a large number of simu-
lations of lengthN of the statistics S(MN (θ, ωi)) implied by each simulation.
We use K of the order of 1000, so any error introduced by the simulation is
very small. These are the averages reported as model moments in tables 2
to 4 of the main text.

Our baseline procedure uses a diagonal weighting matrixW where the di-
agonal contains the inverse of the diagonal elements of bSw,N . This procedure
thus finds parameters that match the model statistics as closely as possible
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to the data statistics, but gives less weight to statistics with a larger stan-
dard deviation. Notice that the calibration result is invariant to a rescaling
of the variables of interest.

8.5.2 Full matrix estimation

We chose a diagonal W in the baseline calibration for simplicity. As is
well known an efficient matrix that minimizes asymptotic variance of the
estimators given the statistics to be matched amounts to settingW = bΣ−1S,N .
The resulting estimates and tests are the ones described in the last columns
of table 4. For bΣS,N to be invertible one requires that s ≤ q. In our case we
have s = 8 and q = 9.

8.5.3 The statistic and moment functions

This section gives explicit expressions for the statistic function S(·) and
the moment functions h(·) that map our estimates into the framework just
discussed in this appendix.

The underlying sample moments are

MN ≡
1

N

NX
t=1

h(yt)

where h(·) : R42 → R9 and yt are defined as

h(yt) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rst
PDt

(rst )
2

(PDt)
2

PDt PDt−1
rs,20t−20³
rs,20t−20

´2
rs,20t−20PDt−20

rbt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, yt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PDt

Dt/Dt−1
PDt−1

Dt−1/Dt−2
...

PDt−19
Dt−19/Dt−20

PDt−20
rbt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where rs,20t denotes the stock return over 20 quarters, which can be computed
using from yt using (PDt,Dt/Dt−1, ..., PDt−19, Dt−19/Dt−20).
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The eight statistics we consider can be expressed as function of the mo-
ments as follows:

S(M) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(rst )
E(PDt)
σrst
σPDt

ρPDt,−1
c52
R25

E(rbt )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2q
M3 − (M1)

2q
M4 − (M2)

2

M5−(M2)
2

M4−(M2)
2

c52(M)
R25(M)
M9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Mi denotes the i−th element of M and the functions c52(M) and
R25(M) define the OLS and R2 coefficients of the excess returns regressions,
more precisely

c5(M) ≡
∙
1 M2

M2 M4

¸−1 ∙
M6

M8

¸
R25(M) ≡ 1−

M7 − [M6,M8] c5(M )

M7 − (M6)
2
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8.5.4 Derivatives of the statistic function

This appendix gives explicit expressions for ∂S/∂M 0 using the statistic func-
tion stated in appendix 8.5.3. Straightforward but tedious algebra shows

∂Si
∂Mj

= 1 for (i, j) = (1, 1), (2, 2), (8, 9)

∂Si
∂Mi

=
1

2Si(M)
for i = 3, 4

∂Si
∂Mj

=
−Mj

Si(M )
for (i, j) = (3, 1), (4, 2)

∂S5
∂M2

=
2M2(M5 −M4)

(M4 −M2
2 )
2

,
∂S5
∂M5

=
1

M4 −M2
2

,
∂S5
∂M4

= − M5 −M2
2¡

M4 −M2
2

¢2
∂S6
∂Mj

=
∂c52(M)

∂Mj
for i = 2, 4, 6, 8

∂S7
∂Mj

=
[M6,M8]

∂c5(M)
∂Mj

M7 −M2
6

for j = 2, 4

∂S7
∂M6

=

h
c51(M) + [M6,M8]

∂c5(M )
∂M6

i ¡
M7 −M2

6

¢
− 2M6 [M6,M8] c

5(M)¡
M7 −M2

6

¢2
∂S7
∂M7

=
M2
6 − [M6,M8] c

5(M)¡
M7 −M2

6

¢2
∂S7
∂M8

=
c52(M) + [M6,M8]

∂c5(M)
∂M8

M7 −M 2
6

Using the formula for the inverse of a 2x2 matrix

c5(M) =
1

M4 −M2
2

∙
M4M6 −M2M8

M8 −M2M6

¸

43



we have

∂c5(M)

∂M2
=

1

M4 −M2
2

µ
2M2c

5(M)−
∙
M8

M6

¸¶
∂c5(M)

∂M4
=

1

M4 −M2
2

µ
−c5(M) +

∙
M6

0

¸¶
∂c5(M)

∂M6
≡ 1

M4 −M2
2

∙
M4

−M2

¸
∂c5(M)

∂M8
≡ 1

M4 −M2
2

∙
−M2

1

¸
All remaining terms ∂Si/∂Mj not listed above are equal to zero.

8.5.5 Differentiable projection facility

As discussed in the main text, we introduce a projection facilitye that pre-
vents perceived stock price growth βt from being higher than δ−1, so as to
insure a finite stock price. In addition, it is convenient for our calibration ex-
ercises if the learning scheme is a continuous and differentiable function, see
the discussion in appendix 8.5. The standard projection facility described
in (17) causes the simulated equilibrium price series Pt(θ, ωi) for a given
shock realization ωi to be discontinuous as a function of the parameters θ.
This is because the price will jump at a parameter value where the facility
is exactly binding.

We thus introduce a projection facility that ‘phases in’ more gradually.
We define

β∗t = βt−1 +
1

αt

"µ
Dt−1
Dt−2

¶−γ Pt−1
Pt−2

− βt−1

#
(47)

and modify the updating scheme (31) to

βt =

½
β∗t if β∗t ≤ βL

βL +w(β∗t − βL)(βU − βL) otherwise
(48)

for some weighting function w, and constants βU , βL. Here βU < δ−1 is the
upper bound on beliefs, chosen to insure that the implied PD ratio is always
less than a certain upper bound UPD ≡ δa

1−δβU , the constant β
L < βU is

some arbitrary level of beliefs above which the projection facility starts to
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operate and w(·) : R+ → [0, 1] is a weighting function. Since w takes values
between zero and one this formula insures that the beliefs are below βU . We
further require that w is increasing, w(0) = 0 and w(∞) = 1, and we want
to insure that the resulting beliefs βt are continuously differentiable w.r.t.
β∗t at the point β

L.
In particular, we use

w(x) = 1− βU − βL

x+ βU − βL
.

With this weighting function

lim
β∗t%βL

βt = lim
β∗t&βL

βt = βL

lim
β∗t%βL

∂βt
∂β∗t

= lim
β∗t&βL

∂βt
∂β∗t

= 1

lim
β∗t→∞

βt = βU

In our numerical applications we choose βU so that the implied PD ratio
never exceeds UPD = 500 and βL = δ−1 − 2(δ−1 − βU), which implies that
the dampening effect of the projection facility starts to come into effect for
values of the PD ratio above 250.

The figure below shows how the standard projection facility in (17) op-
erates versus the continuous projection facility proposed in this appendix.
It displays the discontinuity introduced by the standard projection facility
and that for most β∗ the projection facility is irrelevant. For this graph
βRE = 1.0035.

The continuous dampening of observations for high stock price growth
that is implied by this continuous projection facility is analogous to the
one that would arise from optimally incorporating new information given a
consistent beliefs and a prior about βP that is bounded above by βU .

8.6 Convergence of least squares to RE

We show global convergence when agents use least squares learning and they
have risk aversion as in section 5. The proof shows global convergence, that
is, it obtains a stronger result than is usually found in many applications
of least squares learning using the associated o.d.e. approach. The proof
below is for the standard projection facility.
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Figure 3: Projection Facilities
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We remove the assumption of log-normality on the ε’s but assumeDt ≥ 0
with probability one, which requires that εt ≥ 0. We also need ε1−γt to be
bounded above, formally we assume existence of some positive Uε <∞ such
that

Prob(ε1−γt < Uε) = 1

This excludes log-normality (except for the case of log utility) but it still
allows for a rather general distribution for εt. Obviously, if γ < 1 this is
satisfied if εt is bounded above a.s. by a finite constant, and if γ > 1 this is
satisfied if εt is bounded away from zero. We also denote UPD ≡ δβU

1−δβU <∞,

this is the highest PD ratio that can be achieved given that the projection
facility insures βt < βU .

We first show that the projection facility will almost surely cease to be
binding after some finite time. In a second step, we prove that βt converges
to βRE from that time onwards.

The standard projection facility implies

∆βt =

(
α−1t

³
(aεt−1)

−γ Pt−1
Pt−2
− βt−1

´
if βt−1 + α−1t

³
(aεt−1)

−γ Pt−1
Pt−2
− βt−1

´
< βU

0 otherwise
(49)

If the lower equality applies one has α−1t (aεt−1)
−γ Pt−1

Pt−2
≥ βt−1 ≥ 0 and this

shows the following inequality

βt ≤ βt−1 + α−1t

µ
(aεt−1)

−γ Pt−1
Pt−2

− βt−1

¶
(50)

holds for all t a.s., whether or not the projection facility is binding at t. We
also have that ¯̄

βt − βt−1
¯̄
≤ α−1t

¯̄̄̄
(aεt−1)

−γ Pt−1
Pt−2

− βt−1

¯̄̄̄
(51)

holds for all t a.s., because if βt < βU this holds with equality and if βt−1+

α−1t

³
(aεt−1)

−γ Pt−1
Pt−2
− βt−1

´
≥ βU then

¯̄
βt − βt−1

¯̄
= 0.

Substituting recursively backwards in (50) for past β’s delivers the first
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line in

βt ≤
1

t− 1 + α1

⎛⎝(α1 − 1) β0 +
t−1X
j=0

(aεj)
−γ Pj

Pj−1

⎞⎠
=

t

t− 1 + α1

⎛⎝(α1 − 1) β0
t

+
1

t

t−1X
j=0

(a εj)
1−γ

⎞⎠
| {z }

=T1

+
1

t− 1 + α1

⎛⎝t−1X
j=0

δ ∆βj
1− δβj

(aεj)
1−γ

⎞⎠
| {z }

=T2

(52)

a.s., where the second line follows from

Pt
Pt−1

=

µ
1 +

δ ∆βt
1− δβt

¶
aεt

Clearly, T1 → 1(0 + E((a εj)
1−γ)) = βRE as t → ∞ a.s. Also, if we can

establish |T2|→ 0 a.s. this will show that βt will eventually be bounded away
from its upper bound or, more formally, that lim supt→∞ βt ≤ βRE < βU .
This is achieved by noting that

|T2| ≤
1

t− 1 + α1

t−1X
j=0

δ (a εj)
1−γ

1− δβj

¯̄
∆βj

¯̄
≤ Uε

t− 1 + α1

t−1X
j=0

a1−γδ
¯̄
∆βj

¯̄
1− δβj

≤ Uε

t− 1 + α1

δa1−γ

1− δβU

t−1X
j=0

¯̄
∆βj

¯̄
(53)

a.s., where the first inequality results from the triangle inequality and the
fact that both εj and 1

1−δβj
are positive, the second inequality follows from

the a.s. bound on εj, and the third inequality from βt ≤ βU . Next, observe
that a.s. for all t

(aεt)
−γ Pt

Pt−1
=
1− δβt−1
1− δβt

(aεt)
1−γ <

(aεt)
1−γ

1− δβt
<

a1−γUε

1− δβU
(54)

where the equality follows from

Pt =
δβRE

1− δβt
Dt,
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the first inequality from βt−1 > 0, and the second inequality from the bounds
on ε and βt. Applying the triangle inequality in the right side of equation
(51), using (54) and βt−1 < βU gives the inequality in

1

t− 1 + α1

t−1X
j=0

¯̄
∆βj

¯̄
≤ 1

t− 1 + α1

t−1X
j=0

α−1j

µ
a1−γUε

1− δβU
+ βU

¶

=

µ
a1−γUε

1− δβU
+ βU

¶
1

t− 1 + α1

t−1X
j=0

1

j − 1 + α1
(55)

the equality follows from simple algebra. Now, for any ζ > 0

t−1
tX

i=0

i−1 = tζ−1
tX

i=0

t−ζi−1 ≤ t−1+ζ
tX

i=0

i−(1+ζ) → 0 as t→∞

where the convergence follows from the well known fact that the over-
harmonic series

Pt
i=0 i

−(1+ζ) is convergent. This and the fact that the large
parenthesis in (55) is finite implies

1

t− 1 + α1

t−1X
j=0

¯̄
∆βj

¯̄
→ 0 for all t a.s.

Then (53) implies that |T2|→ 0 a.s. as t→∞. Taking the lim sup on both
sides of (52), it follows from T1 → βRE and |T2|→ 0 that

lim sup
t→∞

βt ≤ βRE < βU

a.s. The projection facility is thus binding finitely many periods with prob-
ability one.

We now proceed with the second step of the proof. Consider for a given
realization a finite period t where the projection facility is not binding for
all t > t. Then the upper equality in (49) holds for all t > t and simple
algebra gives

βt =
1

t− t+ αt

⎛⎝t−1X
j=t

(aεj)
−γ Pj

Pj−1
+ αt βt

⎞⎠
=

t− t

t− t+ αt

⎛⎝ 1

t− t

t−1X
j=t

(aεj)
1−γ +

1

t− t

t−1X
j=t

δ ∆βj
1− δβj

(aεj)
1−γ +

αt
t− t

βt

⎞⎠
(56)
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for all t > t. Equations (50) and (51) now hold with equality for all t > t.
Similar operations as before then deliver

1

t− t

t−1X
j=t

δ ∆βj
1− δβj

(aεj)
1−γ → 0

a.s. for t→∞. Finally, taking the limit on both sides of (56) establishes

βt → a1−γE(ε1−γt ) = βRE

a.s. as t→∞.¥
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