Abstract
Little is known about the effects of revealing information on relative performance during a dynamic tournament. We empirically study the impact of interim rank on risk taking and performance using data on professionals competing in tournaments for large rewards. As our data allows us to observe both the intended action and the performance of each participant, we can thus measure risk taking and performance separately. We present two key findings. First, risk taking exhibits an inverted-U relationship with interim rank. Revealing information on relative performance induces individuals trailing just behind the interim leaders to take greater risks. Second, competitors systematically underperform when ranked closer to the top, despite higher incentives to perform well. Disclosing information on relative ranking hinders interim leaders.

JEL classifications: J33, J40, M50, M52
Keywords: Dynamic tournaments, interim ranking, relative performance, risk taking

This paper was produced as part of the Centre’s Productivity and Innovation Programme. The Centre for Economic Performance is financed by the Economic and Social Research Council.

Acknowledgements
We would like to thank Cristian Bartolucci, Raj Chetty, Pascal Courty, Dino Gerardi, Giovanni Mastrobuoni, Francesca Molinari, Aleksey Tetenov, Tommaso Valletti, John Van Reenen, Jaume Ventura, and seminar participants at BU, Cambridge, Collegio Carlo Alberto, Cyprus, Dartmouth, Imperial College Business School, LSE, NC State University, UCL, and UPF for useful comments. We would especially like to thank the former head coach of the Greek weightlifting team, Christos Iakovou, the vice president of the Hellenic Weightlifting Federation, Giorgos Paraskevopoulos, and the executive director of the Queensland Weightlifting Association for useful comments and advice. Grace Lee provided excellent research assistance. Financial support from the ESRC Centre for Economic Performance is gratefully acknowledged. The opinions expressed in this paper and any remaining errors are those of the authors alone.

Christos Genakos is a Research Economist in the Productivity and Innovation Programme, Centre for Economic Performance, London School of Economics and Political Science. He is also Assistant Professor in the Economics Department of the Athens University of Economics and Business. Mario Pagliero is Associate Professor of Economics at the University of Turin.

Published by
Centre for Economic Performance
London School of Economics and Political Science
Houghton Street
London WC2A 2AE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission in writing of the publisher nor be issued to the public or circulated in any form other than that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the above address.

© C. Genakos and M. Pagliero, revised 2012
1. Introduction

Individuals competing in tournaments are rewarded on the basis of their relative, rather than absolute, performance. Many everyday fields of economic activity are characterized by such a tournament-like structure. Employees and managers in labor markets, for example, are subject to relative performance evaluations within a firm; in financial markets, mutual funds compete in attracting new funds on the basis of their relative performance; in product markets, companies compete in patent races to secure the rights to new products; in schools, students and teachers may be ranked according to their relative performance; and, finally, the majority of sporting events are organized as tournaments.

An extensive literature emphasizes the role of tournaments in realigning the incentives of the parties involved (Lazear and Rosen, 1981; Green and Stokey, 1983; Nalebuff and Stiglitz, 1983). For instance, in the labor market, a tournament among managers could provide incentive for improved effort resulting in higher performance, thus mitigating the typical inefficiencies caused by the conflicting objectives of managers and shareholders.

However, it is likely that tournaments affect not only choices concerning effort, but other aspects of individual behavior as well, including risk taking and performance under pressure. In addition, tournaments are often dynamic, so the incentives generated by the competition may be different for individuals leading in the competition and those lagging behind. Individuals with a high interim rank, for example, may try to protect their position by decreasing risk taking. Those lower down in the interim rank may engage in riskier strategies in an attempt to catch up with the leaders. Exactly how agents’ risk-taking behavior and performance varies depending on relative performance in previous stages of the competition is still an open question, and fundamental to our understanding of tournaments in labor, financial and product markets. From a policy point of view, it is crucial to understand how disclosure of information on relative performance during a competition may affect participants’ subsequent behavior.
An important branch of research is devoted to understanding how the behavior of individuals is affected by tournaments (Ehrenberg and Bognanno, 1990; Knoeber and Thurman, 1994; Chevalier and Ellison, 1997, Brown, 2012) and other performance evaluation schemes (Oyer, 1998; Lazear, 2000; Courty and Marschke, 2004; Bandiera, Barankay and Rasul, 2007). Economic theory suggests that risk taking and performance depend on how information on relative performance is revealed, but the shape of the relation between interim rank, risk taking and performance, and the magnitude of these effects are empirical issues. In practice, little is known about the impact of interim rank on risk taking and performance during a dynamic tournament (Casas-Arce and Martinez-Jerez, 2009). The main obstacle is the difficulty in separately observing both the level of risk taken by competitors and their performance during a tournament.

This paper exploits an unusually rich panel dataset derived from weightlifting competitions, with individual level information on professional athletes competing repeatedly in tournaments with substantial rewards. Weightlifting competitions are multistage tournaments with the distinctive characteristic of requiring athletes to publicly announce the amount they intend to lift at each stage. Access to these recorded announcements, together with information on whether the lift was successful or not, affords a unique opportunity to observe both the intentions and the performance of all participants.

Using a panel dataset containing round-by-round information from Olympic Games and World and European Championships between 1990 and 2006, we estimate how the announced weights and the probability of a successful lift vary depending on interim rank. Since what matters for an individual’s score is the amount successfully lifted (more details are given in Section 2), higher announcements represent a riskier strategy, in the sense that they imply a larger difference between the outcome in case of success or failure. Therefore, the relation
between rank and announcement is informative of athletes’ risk-taking behavior, while the relation between rank and the probability of a successful lift is informative of their performance.

The probability that an athlete will succeed in lifting the declared weight during a specific attempt is much less than one. This implies that interim ranking within a competition is very volatile. This variability of interim ranking provides us with an ideal environment for observing how professionals react when in the lead or when trailing other competitors. The panel dimension of the data allows us to control for multiple sources of unobserved heterogeneity at the individual, competition and year level. The multistage nature of the games even allows us to estimate specifications where we can control for joint individual-competition-year fixed effects.

We present two key results. First, when lagging behind, competitors tend to take greater risks than when in the lead. However, risk taking exhibits an inverted-U relationship with rank: announcements increase from first to sixth place, but decrease moving further down in the rank; after rank seventeen, the level of risk taken is not significantly different from first place. The magnitude of the impact of rank is significant. A shift from first to sixth place corresponds to a 1.8Kg increase in announcement, which is 50 percent of the average increase in announcement between two stages.

Our results are in line with the conventional wisdom that troubled firms and interim losers in corporate tournaments are more likely to take riskier strategies than market leaders, or that the trailing team in sports competitions may have a strong incentive to take greater risks. The non-monotone relation between interim rank and risk taking is consistent with the observation that catching up with the leaders becomes progressively more unlikely as one moves down in the ranking.

Our second result is that, on average, the probability of a successful lift (conditional on the chosen weight) significantly increases when moving down in the ranking. An athlete in sixth place is at least 10 percent more likely to lift the declared weight than when he is ranked first. It
An alternative explanation for this result is that athletes underperform under pressure, despite strong motivation and effort (Ariely, Gneezy, Loewenstein and Mazar, 2009; Dohmen, 2008; Apesteguia and Palacios-Huerta, 2009). This interpretation is consistent with anecdotal evidence that athletes’ performance may deteriorate as the stakes rise, or when there are strong expectations for an outstanding performance. In line with the hypothesis that individuals perform badly under pressure, we show that the probability of failing to lift a given weight is higher when the competition is more intense or more prestigious.

Our work is related to a growing empirical literature on tournaments. Four key aspects distinguish our work from earlier studies. First, our paper focuses on the effects of interim rank within a tournament. The existing literature has mainly focused on the impact of the overall level of prizes, or on different compensation schemes. Second, most studies focus on either performance or risk taking. When they do attempt to measure risk taking, they focus on variability in performance or other output measures. Differently from previous studies, we can measure risk taking separately from performance, and we can also condition for the intended strategies of participants when comparing performance. Third, we use an exceptionally rich panel dataset that allows us to control for unobserved heterogeneity in greater detail than previous studies.

4 One would generally expect athletes to be more motivated and to exert greater effort when ranked at the top, where the gain from an increase in rank is highest. The positive relation between rewards, motivation and effort seems to be accepted in the literature (Prendergast 1999), although with some exceptions (Camerer, Babcock, Lowenstein and Thaler, 1997; Gneezy and Rustichini, 2000a and 2000b; Frey and Jegen, 2001; Heyman and Ariely, 2004).

7 Consider the case in which leaders in a multistage tournament try to protect their position by taking low risk strategies (strategies with low payoffs but a high probability of success). If the riskiness involved in such strategies is not observable to the researcher, comparing realized payoffs across individuals may not be informative about differences in effort.
2. A brief overview of weight lifting competitions and the data

In weightlifting competitions, athletes attempt to lift heavy weights mounted on steel bars. Lifters perform two types of lifts - the snatch and the clean & jerk. Lifters are allowed six attempts, the first three for snatch and the remaining for clean & jerk. The competition is therefore organized in six stages. Within each stage, weights are progressively loaded onto the bar and competitors attempt to lift their desired weight (called the announcement) in increasing order, from the lightest to the heaviest weight. The sequence of attempts and outcomes of the lifts are displayed publicly on an announcement board.

If they are unsuccessful at a particular weight, the athletes have the option of reattempting the same lift or trying a heavier one in the following stage. At the end of the competition, each athlete’s highest successful lifts in the snatch and the clean & jerk are summed to determine their final scores. Athletes are then ranked, with the highest score corresponding to first place. In addition, at the end of each stage, interim rankings are computed using the same procedure.

The relationship between final rank and prizes is convex, particularly at the top. The first three athletes are awarded medals and receive most of the media coverage. Private sponsorships are also offered mainly to medal-winners, and gold medalists receive the lion’s share of fame and recognition. National teams often provide substantial monetary rewards and other benefits such

8 Weightlifting has a long history as an Olympic discipline. Men’s weightlifting was on the program of the first modern Olympic Games in Athens in 1896, while the first contemporary World Championships took place in London in 1891.

9 In the snatch, they lift the bar to arm’s length above their head in one movement. In the clean & jerk, they lift the bar to their shoulders, stand up straight, and then jerk the bar to arm’s length above their head.

10 Before the start of each game, competitors are weighed and assigned an official bodyweight. This then determines the weight category in which they will compete. There are eight categories for men and seven for women. Athletes may switch between different categories over the course of their athletic careers. For this reason, our definition of a competitor throughout this paper is an athlete in a particular bodyweight category.

11 Initial announcements are made before the beginning of the stage without knowing the announcements of the others. However, these announcements can be changed during the course of the stage, provided they do not require unloading weight from the bar. In our data set, we observe the final announcements, which correspond to the weights effectively attempted by athletes. When two athletes wish to attempt the same weight, a random lot number publicly assigned at the beginning of the competition determines the order.

12 The weight announced in stage three (the last attempt in snatch) does not affect the announcement in stage four (the first attempt in clean & jerk).

13 For the second and third stage, the interim rank is computed using only the best successful lift in snatch.
as civil service jobs, or employment in the national sport federation to medal winners in international competitions.14

Comprehensive round-by-round data for all athletes that participated in the best-known weightlifting competitions (the Olympic Games, the World and the European Championships) from 1990 to 2006 were obtained from the International Weightlifting Database, yielding a total of 41,550 individual stage-specific observations for 3,763 athletes. For each observation, we have information on individual announcements and outcomes, together with the overall rank at the end of the competition, as well as at the end of snatch and clean & jerk lifts.15

Using this information, we reconstructed the interim ranking of all athletes at each stage of the competition.16 Table 1 provides summary statistics on announcement and frequency of successful lifts. The average announcement increases from one stage to the next by roughly 3 Kg.17 The frequency of successful lifts falls correspondingly by around 20 percent. In general, higher weights can be lifted in the clean & jerk, as reflected in the higher average announcements.

Variability of ranking, even for a given athlete within a given competition, is significant. On average, the difference between the maximum and minimum interim rank for a given individual within a competition is 6.4 positions, with the 25th percentile experiencing a change of 3 positions and the 75th percentile experiencing a change of 8 ranks. Even very consistent weightlifters may oscillate, for example, between getting a gold and getting no medal at all.

3. Empirical Framework

A key feature of weightlifting competitions is that the outcome of a specific lift is uncertain. We characterize each athlete’s ability as a risk-reward frontier that maps announced weight into

14 For more information on prizes, see Genakos and Pagliero (2011).

15 The outcome of 1 percent of the observations is missing, because the athlete did not attempt to lift the announced weight. Observations relating to such individuals in those specific competitions are excluded from the sample.

16 Our algorithm to reconstruct ranking was based on the official rules of the International Weightlifting Federation. We verified the results from our algorithm against the ranking information at the end of both snatch and clean & jerk, as well as the final overall ranking.

17 After a successful attempt, athletes are required to increase their announcements by 1 Kg.
the probability of a successful lift. The probability of success \(P_{is}(A_{is}) \) of player \(i=1, \ldots, N \), in stage \(s=1, \ldots, 6 \), announcing a weight \(A_{is} \), naturally decreases as the announcement increases (Figure 1). Competitors can improve the probability of a successful lift by increasing the quality and intensity of training before the competition, or by achieving greater concentration/determination during the game. However, any variable affecting performance may shift the frontier, including psychological pressure, fear or emotions in general. The choice of the announcement entails a fundamental trade-off between the gains from a higher successful lift and the costs of a higher probability of failing. A higher announcement implies a larger difference between the payoff for success and failure and constitutes a riskier strategy.\(^{18}\)

Weightlifting competitions can be described by a dynamic tournament game, where the same stage game is repeated six times. At each stage, the bar is progressively loaded, and athletes sequentially choose whether they wish to attempt the current weight or wait. Hence, at each point of the game \(t \), in which player \(i \) makes a decision (attempt the current weight or wait) during stage \(s \), there is a well-defined history \(H_{tsi} \) of previous decisions and outcomes.\(^{19}\) A (pure) strategy for player \(i \) is a function \(\sigma_i \) which assigns an action (wait, or lift the current weight) to each information set in which player \(i \) makes a decision.

Our first empirical objective is estimating how the announcement decisions depend on the interim ranking. We focus on this specific aspect of the history for two reasons. First, the literature, summarized in Section 1, suggests that interim ranking is a key determinant of risk taking in tournaments.\(^{20}\) Second, interim ranking is one central piece of information that is

\(^{18}\) For realistic values of the announcement, the probability of a successful lift, and the slope of the risk-reward frontier, increases in announcement generate gambles that are second order stochastically dominated (in Section 4 we discuss the magnitude of the impact of announcements on the probability of a successful lift).

\(^{19}\) This includes decisions (lift, wait) and outcomes (success, failure) of all players in previous stages and for any lower admissible weight during the current stage. For example, if the current weight is 100Kg in stage 6, player \(i \) observes history \(H_{tsi} \) that includes the decisions made by all players in stages 1 through 5 and their outcomes, decisions and outcomes of all players in stage 6 for weights up to 99Kg, and possibly of players with lower lot number for 100Kg.

\(^{20}\) This intuition also specifically applies to weightlifting competitions. For a simple competition with one stage only, the rules described above directly imply that interim ranking affects risk taking in equilibrium. Under some conditions, an inverse U-shaped relationship between interim rank and risk taking naturally emerges.
reported by athletes to be fundamental and that is readily available throughout the competition, so our focus is consistent with how the game is actually played.

In principle, however, the observed weight chosen by each athlete at each stage may depend on the entire history of the game up to that point. Hence, our empirical identification of the relation between interim rank and risk taking requires imposing some restrictions on what specific features of the history matter for announcements. We start by assuming that the behavior of others affects player i only through the interim ranking. We then relax this assumption by allowing history to matter in a more complex fashion, taking into account measures of proximity of athletes with similar interim scores and other variables potentially correlated with interim ranking. We also allow the relation between interim rank and risk taking to vary across individuals, competition and stages. This is important, as individuals may have different risk-reward frontiers, competitions may have different prize levels, and competitors may react differently to changes in interim ranking depending on the stage of the competition.

The second objective of the paper is to investigate how interim ranking affects performance. We proceed in a similar way and study how the probability of a successful outcome P_{is} depends on the announcement A_{is} and on the interim ranking R_{is}. Performance may depend on interim ranking indirectly, through incentives to perform well, or directly, through the contextual and psychological effects of interim performance. The existing literature, reviewed in Section 4.4, suggests that psychological pressure at the top of the ranking may decrease performance. In interpreting the results in Section 4, we will discuss these two possible channels through which interim ranking may affect performance. As for risk taking, we will also explore other ways in which history may possibly affect performance, and allow for heterogeneity across individuals, competitions and stages.

3.1. The Determinants of Announcements

We estimate models of the following general form:
Announcement_{itj} = X_{itj} \beta_0 + f(Rank_{itj(s-1)}, \beta_1) + \\
+ \beta_2 \text{Announcement}_{itj(s-1)} + \beta_3 \text{Success}_{itj(s-1)} + e_{itjs} \quad (1)

where Announcement_{itj} is the announcement of athlete \(i\), in year \(t\), in competition type \(j\) (a competition is classified as Olympic Game, World or European Championship), at stage \(s\) of the game \((s=2,3,5,6)^{21}\); \(X_{itj}\) is a vector that includes characteristics of the individual (binary indicators for country of origin and whether competing in the home country, bodyweight) and of the competition (e.g., number of competitors), \(Rank_{itj(s-1)}\) is the ranking of athlete \(i\), in year \(t\), in competition \(j\) at the end of stage \(s-1\); \(f(\cdot)\) is a flexible functional form for the relation between interim rank and announcement, we only require \(f(\cdot)\) to be linear in the vector of parameters \(\beta_1\); \(\text{Success}_{itj(s-1)}\) is a binary indicator variable that takes the value of one if the previous attempt was successful; the random variable \(e_{itjs}\) captures the unobserved determinants of an announcement. Finally, \(\beta_2, \beta_3\) are scalars, whereas \(\beta_0\) and \(\beta_1\) are vectors of parameters to be estimated.

The model includes success in the previous round because the rules of the game dictate a minimum increase of 1 Kg after a successful attempt. The level of the previous announcement is also included, as we want to allow for decreasing increments as the absolute level of the announced weight increases.\(^{22}\)

Cross-sectional estimates of model (1) will produce biased estimates of all parameters, unless one is able to control for the athletes’ ability, which is likely to affect both interim ranking and announcements. Unobserved individual ability may also vary over time, as the quality of each athlete’s training may vary across years, or even for different competitions within the same year.

\(^{21}\) The first stage of snatch is dropped because the interim ranking is not defined for the first stage. In estimating model (1) we also dropped the first stage of clean & jerk because the impact of previous announcement and success may be very different during the transition from snatch to clean & jerk, which allows heavier weights to be lifted. The results, however, are not driven by the inclusion or omission of the first stage of clean & jerk.

\(^{22}\) As the minimum increment after a successful attempt is 1 Kg, one could rewrite model (1) as follows:

\[
\text{Announcement}_{itj} = [\text{Announcement}_{itj(s-1)} + \text{Success}_{itj(s-1)} + \{X_{itj} \beta_0 + f(Rank_{itj(s-1)}, \beta_1)\} + b \text{Announcement}_{itj(s-1)} + b \text{Success}_{itj(s-1)} + e_{itjs}].
\]

where the first bracket is the automatic announcement, dictated by the rules of the game, and the second is the discretionary announcement, capturing athletes’ risk taking behavior. Thus, the function \(f(\cdot)\) captures the impact of rank on athletes’ discretionary announcement, while the parameters \(\beta_2\) and \(\beta_3\) in model (1) capture the joint effect on both the automatic and the discretionary announcement \((\beta_2=1+b_2; \beta_3=1+b_3)\).
Moreover, the organization of each type of competition may vary across years in ways that are unobserved to the researcher, and this may impact athletes’ behavior. Hence, one needs to account for multiple sources of unobserved heterogeneity.

The error term in (1) can be thought of as the sum of athlete, year, competition, athlete-year, competition-year, athlete-competition, athlete-year-competition components,

$$
e_{itjs} = \tau_i + \tau_j + \tau_s + \tau_{it} + \tau_{jt} + \tau_{ij} + \tau_{itj} + \epsilon_{itjs}$$

(2)

where ϵ_{itjs} captures idiosyncratic shocks to the announcement decision, $\epsilon_{itjs} \sim \text{IID}(0, \sigma^2)$. Alternative specifications are possible, depending on whether unobserved heterogeneity is thought to vary across athletes, years, type of competitions, or their interactions. In the next section, we will report the results using a number of alternative specifications for the unobserved heterogeneity.

Since unobserved heterogeneity is likely to be correlated with previous announcements, performance in previous stages, and therefore interim rank, the random effects assumption is unlikely to be appropriate in this case. Thus, we choose to work with a fixed effects model. Due to the multi-stage nature of weightlifting competitions, we can include athlete-year-competition fixed effects (τ_{itj}). In this case, the relation between interim rank and announcement is estimated only by exploiting the variability of ranking across stages of the same competition for a given individual.

However, the existence of a lagged dependent variable in (1) implies that the fixed effects estimator may be biased. To overcome this problem we assume that $\text{Rank}_{itj(s-1)}$, $\text{Announcement}_{itj(s-1)}$, and $\text{Success}_{itj(s-1)}$ are predetermined, i.e., they may be correlated with previous realizations of ϵ_{itjs}, so they may depend on unobserved determinants of the choice of the announcement in previous stages, but they are not correlated with current and future shocks to
the announcement decision. Including these variables in one single vector of regressors \(W_{itj(s-1)} \), we assume that \(E(\varepsilon_{itj} | \tau_{itj}, X_{itj}, W_{itj(s-1)}, W_{itj(s-2)}, \ldots, W_{itj}) = 0 \) \(^{23} \)

Consider now the richest specification with athlete-year-competition fixed effects (\(\tau_{itj} \)). First differencing the model eliminates the fixed effects,

\[
\Delta \text{Announcement}_{itj} = \Delta W_{itj(s-1)} \gamma + \Delta \varepsilon_{itj}. \tag{3}
\]

and once-lagged predetermined regressors, \(W_{itj(s-2)} \), are valid instruments for \(\Delta W_{itj(s-1)} \), so parameters can be estimated using an IV approach (Anderson and Hsiao, 1981). We also employ more efficient GMM estimators (Arellano and Bond, 1991; Blundell and Bond, 1998) by taking into account all the available moment restrictions. Taking first differences and using instrumental variables also deals with the potential bias induced by the relatively short panel. The results, reported in the next section, are remarkably stable across specifications and estimation methodologies.

Finally, our specification assumes that the control variables and fixed effects in (1) capture the main determinants of risk-taking behavior. One concern could be that a higher concentration of athletes with very similar performance may affect an individual’s behavior. Similarly, the absolute distance from the closest athletes (following or proceeding) in the ranking may also make a difference. Risk taking may be more rewarding if an athlete leads the closest trailer by a relatively substantial amount, but trails the closest leader by relatively little. We explore these issues in our robustness analysis. None of our results change in any fundamental way.

3.2. The Determinants of Performance

We estimate the impact of interim rank on performance using the linear probability model:

\[
\text{Success}_{itj} = X_{itj} \delta_0 + g(\text{Rank}_{itj(s-1)}, \delta_1) + \delta_2 \text{Announcement}_{itj} + \nu_{itj} \tag{4}
\]

where \(\text{Success}_{itj} \) is a binary indicator that takes the value of one if athlete \(i \), in year \(t \), in competition \(j \), at stage \(s \) \((s=2, \ldots, 6)^{24} \) was successful in lifting the announced weight

\(^{23} \) If \(f(\text{Rank}_{itj(s-1)}, \beta_{1}) \) is a polynomial function, then \(W_{itj(s-1)} \) will include not only \(\text{Rank}_{itj(s-1)} \) but also its square, cube, etc., depending on the order of the polynomial.
(Announcement$_{itjs}$), X_{ij} is the same vector of exogenous individual and competition characteristics as before, $Rank_{itjs}^{(s-1)}$ is the interim rank of individual i, in year t and competition j, in the previous stage; u_{itjs} is an error term that captures unobserved determinants of a successful lift. Our main interest is in the vector of parameters δ_1 in the flexible functional form $g(\cdot)$, which describes the impact of rank on the probability of success, controlling for announcement. As above, we require $g(\cdot)$ to be linear in the parameters δ_i. The parameter δ_2 describes the impact of announcement on the probability of a successful lift. In terms of Figure 1, it is an estimate of the average slope of athletes’ risk-reward frontier.

As before, we need to account for unobserved heterogeneity. The unobserved ability of athletes, for example, is likely to be correlated with both interim ranking and the probability of a successful lift. Thus, the random effects assumption seems unrealistic and we consider a fixed effects framework. We correct for unobserved heterogeneity by extensively controlling for fixed effects. In particular, the error term in (4) can be decomposed as in (2):

$$u_{itjs} = \tau_i + \tau_t + \tau_j + \tau_s + \tau_{it} + \tau_{jt} + \tau_{ij} + \tau_{itj} + \eta_{itjs}$$

(5)

where η_{itjs} describes the random component of performance, $\eta_{itjs} \sim \text{IID}(0, \sigma_\eta^2)$. This idiosyncratic component allows for random errors by the athletes, or for unforeseen circumstances affecting the performance of an athlete during a lift. As above, our most general specification allows for athlete-year-competition fixed effects.

The assumption of strict exogeneity of interim rank and announcement in (4) is likely to be violated, since both variables may depend on the outcome of previous attempts. We then

24 The first stage of snatch is dropped because the interim ranking is not defined for the first stage.
25 The assumption that $\eta_{itjs} \sim \text{IID}(0, \sigma_\eta^2)$ implies that there is no correlation between η_{itjs} and ϵ_{itjr}. This assumption is not essential for identification, but it simplifies the analysis and is realistic in our application. The shocks η_{itjs} capture events that occur during the competition and may affect the performance of the athletes (e.g., the behavior of the public during the competition). Any variable which is fixed at the individual level, for a given competition, is captured by the athlete-year-competition fixed effects. Conversations with coaches and athletes indicated that athletes typically concentrate on successfully lifting the weight chosen by their coaches. Although coaches and athletes do communicate during the game, it is unlikely that the coach incorporates in the announcement decision the idiosyncratic effects captured by the error term η_{itjs}. Moreover, the variables captured by η_{itjs} are likely to be realized only during – or just before – the attempt, so they are unlikely to affect the announcement decision.
26 The correlation between interim ranking and previous performance may give rise to an upward bias in the impact of interim rank on performance. This endogeneity problem is different from the so called “sophomore slump” caused by mean reversion, a
proceed under the assumption that such variables are predetermined. Including $\text{Rank}_{itj(s-1)}$ and $\text{Announcement}_{itj}$ in a single vector $Z_{itj(s-1)}$, we assume that $E(\eta_{itjs}|\tau_{itj}, X_{itj}, Z_{itj(s-1)}, Z_{itj(s-2)},..., Z_{itj})=0$. First differencing model (4) we obtain

$$\Delta \text{Success}_{itjs} = \Delta Z_{itj(s-1)} \theta + \Delta \eta_{itjs} \quad (6)$$

As before, lagged pre-determined regressors can be used as instruments. In contrast to the results on risk taking, we will show that controlling for unobserved heterogeneity and accounting for endogeneity greatly affects the estimated impact of interim rank on performance.

The model presented in this section provides considerable computational advantages over a limited dependent variable model with endogenous explanatory variables and fixed effects. In fact, few results are available for this class of models (see Arellano and Honorè, 2001, for a survey). In practice, one has to weigh the simplicity and flexibility of the linear fixed effects framework against the obvious disadvantage that the predicted probabilities may not lie between zero and one (see Bernard and Jensen, 2004). In our application, the linear model is particularly appealing because it avoids putting restrictions on the correlation between regressors and individual heterogeneity. In the next section, we provide extensive robustness analysis using alternative specifications and also a fixed effects logit model. The results are not affected in any fundamental way.

4. Empirical Results

4.1 The Impact of Rank on Announcement

We first explore the relationship between interim rank and announcement using a fully flexible binary-variable specification for $f(\text{Rank}_{itj(s-1)}, \beta_1)$,

$$f(\text{Rank}_{itj(s-1)}, \beta_1)=\Sigma_{n} \beta_{1n} \text{Rank}(n)_{itj(s-1)},$$

misleading result that is sometimes mentioned in the popular press. This is typically obtained by trying to explain changes in performance between period t and $t-1$ using the level of performance in $t-1$.

14
where $\text{Rank}(n)_{ij(s-1)}$ is an indicator variable equal to one if individual i is ranked n^{th} at the end of stage $s-1$. Table 2 reports results for model (1) using alternative fixed effects specifications. Column 1 provides the estimated coefficients when we control for athlete, year and competition fixed effects separately, whereas column 5 reports the estimates from our richest specification (including joint athlete-year-competition fixed effects). The omitted rank category throughout the table corresponds to the athlete ranked first, so all the rank coefficients measure the impact of being ranked n^{th} relative to being first.

Figure 2 plots the estimated coefficients from Table 2 to facilitate comparison. Two clear patterns emerge. First, when lagging behind, competitors tend to adopt riskier strategies than those in the lead. Second, risk taking exhibits an inverted-U relationship with rank: announcements increase from first to sixth place, but then decrease for further decreases in rank until seventeenth place, after which there is no significant effect. The relation is precisely estimated and the alternative fixed effects specifications provide very similar results.

Table 3 reports results for model (3), where we approximate $f(.)$ using a fifth order polynomial of $\text{Rank}_{ij(s-1)}$. Column 1 reports the results obtained with the fixed effects estimator. Column 2 reports those obtained by taking first differences to eliminate the athlete-competition-year fixed effects, and then using the IV estimator (where instruments are the once-lagged regressors). Column 3 reports the results obtained from the model in first differences using the GMM estimator, which exploits all the available moment restrictions. Figure 3 plots the impact of interim rank on announcement for each estimation strategy.

The inverse-U relationship between interim rank and announcement clearly emerges from all estimation strategies. Announcements increase from first to sixth place, but then decrease for

27 Throughout the paper, we report robust standard errors clustered by athlete. All equations include stage of the competition binary indicators. Table 2 reports only the coefficients of the first thirteen rank dummies; the full table is reported in Appendix A (Table A1).

28 Figure A1 plots the estimated coefficients and confidence interval on the twenty rank binary indicators from our most restrictive specifications in Table 2, column 5.

29 We choose to use a smooth function $f(.)$ to reduce the number of parameters to be estimated and the number of instruments. The results do not change using higher order polynomials and the coefficients of the sixth or higher power of $\text{Rank}_{ij(s-1)}$ are never significantly different from zero.
further decreases in rank. A change in ranking from first to somewhere between 11th and 15th has no impact on an athlete’s announcement. The relationship progressively flattens towards the bottom of the ranking, where changes in rank have little impact on behavior.

The non-linear impact of interim rank on announcement is always statistically significant. Relative to the fixed effects estimators in Figure 2, accounting for endogeneity implies a more pronounced peak in the impact of rank on announcement. When ranked sixth, an athlete announces at least 1.8Kg more than when ranked first, which is 50 percent of the average increase in announcement between two stages (see Table 1).

The other estimated coefficients in Table 2 and 3 are in line with expectations. Both the impact of the previous announcement and the success indicator are positive and significant, as athletes cannot decrease their announcement and must increase it after a successful attempt. Also, in the first three columns of Table 2, we can estimate the impact of some athletes’ characteristics. Being heavier (within a given category in a specific competition) implies higher announcements. This confirms a well-known fact in weightlifting that a higher body mass allows athletes’ to lift heavier weights. The number of competitors has a positive, but very small effect on announcement.30 Finally, competing at home does not seem to induce athletes to take greater risks, as the coefficient on Home\textsubscript{ij} is never significant.

\textbf{4.2 Interpretation of the impact of rank on announcement}

Conventional wisdom from sports competitions tells us that the trailing team may have a large incentive to adopt riskier strategies in an attempt to catch up with the leaders (Grund and Gurtler, 2005). Similarly, it has been argued that troubled firms and interim losers in corporate tournaments are more likely to take riskier strategies than market leaders (Bowman, 1982; Knoeber and Thurman, 1994; Brown, Harlow and Starks, 1996, Chevalier and Ellison, 1997).31
The fact that the impact of rank is positive up to rank seventeen is broadly consistent with this literature.

The progressive flattening of the relation after the first six positions is also consistent with differences in risk-taking behavior at different points in the ranking. Some additional details further support the link between the results in Figure 2 and differences in risk-taking behavior at different positions in the ranking. If changes in the benefits deriving from risk taking drive the results in Figure 2, then we expect to observe particularly large differences between the estimated coefficients at ranks one and two, for while the leader has no gain from variability in rank, the second athlete may significantly gain from rank variability. We also expect to observe large differences between rank 3 and 4. In fact, prizes in weightlifting competitions display a significant discontinuity between 3rd and 4th rank. This provides incentives to take riskier strategies when ranked 4th than when ranked 3rd.

We find strong support for these hypotheses: the coefficient for rank two is statistically different from zero at conventional levels (Table 2, column 5), and so is the difference in coefficients between rank three and four. Moreover, the differences between rank one and two (0.397 Kg), and three and four (0.235 Kg), are larger than any other difference between adjacent ranks.

Risk taking and absolute distance from competitors

The inverted-U relationship of rank on announcement observed in Figure 3 remains unchanged when we control for additional variables potentially affecting risk-taking behavior. For example, we would expect athletes to take more risks and increase their announcement in an attempt to overtake their competitor if they are relatively close to the athlete just above them, but

32 Since rewards are decreasing at a decreasing rate going down in the ranking, the benefit from variability in rank is expected to decrease substantially towards the bottom of the ranking, where catching up with the leaders becomes progressively more unlikely.

33 The discontinuity in rewards locally affects the concavity of the relation between rewards and rank, so that incentives to take risks are drastically different just above and below this threshold.

34 F(1, 3762)=11.47, p-value=0.001.
relatively far from the competitor just below in the interim rank. On the contrary, we would expect athletes to reduce risk taking and try to defend their position if they are relatively far from the competitor just above, but close to the competitor below in the interim rank.

For each observation, we compute the difference in score between each athlete and the athletes ranked just above and below. We then classify each observation in one of four categories and define four corresponding indicator variables: FF when a given athlete is far from both the athletes leading and following (1 percent of the observations); FC when a given athlete is far from the athlete leading but close to the athlete following (4 percent); CF in the opposite case (5 percent); and finally CC when both are close (90 percent). We then use CC as the baseline category, and include the remaining three indicators in model (1).

Results using model (3) are reported in Table A2, column 1. Announcement is 1.2 kg higher when the competitor in front is close but the trailing athlete is far (CF) relative to the baseline category, while 1.2 Kg lower in the opposite case (FC), and not significantly different when both are far (FF). Most importantly, the coefficients on rank imply that the pattern in Figure 3 is not affected. This further supports the relation between announcement decision and risk-taking behavior.

Risk taking and intensity of the competition

A second concern could be that a higher concentration of athletes with similar performance might affect individuals’ risk taking, as competition becomes more intense. We construct a measure of the intensity of the competition which varies at the individual level within a competition. Given the interim score \(s_{itjs} \) of athlete \(i \), in year \(t \), competition \(j \), and stage \(s \), we compute the number \((N_{itjs}) \) of athletes \(k \neq i \) with interim score \(s_{kjs} \) within a 10Kg radius: \((s_{itjs}-10) \leq s_{kjs} < (s_{itjs}+10) \). We then construct a binary indicator for tough competitions, which is equal to

35 We classify two athletes being far apart if the distance between their interim scores’ is higher than the ninety-fifth percentile of the distribution of distances in that particular stage. We also experimented using the ninetieth or the seventy-fifth percentile as the cut-off. Our results qualitatively remain the same.

36 The results are consistent with the incentives to take risk discussed in the literature (Bronars and Oettinger, 2001).
one when our measure of intensity of the competition is above 50 percent.\footnote{On average, the fraction of competitors within the 10Kg interval is twenty-six percent, with a median of twenty-four percent. So the fifty percent cut-off level captures the behavior of athletes facing relatively high concentrations of competitors around them (90th percentile). Results are robust to changes in either the radius around an athlete or the cut-off level that we use.} Table B2, column 2 reports the results from model (3) when we add the binary indicator for tough competitions. More intense competition stimulates more risk taking. Again, the pattern described in Figure 3 is not affected.\footnote{We have also experimented by interacting the indicator for close competitions with the rank dummies and the other regressors in model (1). The results are not affected.}

4.3 The Impact of Rank on the Probability of a Successful Lift

We first explore the relationship between interim rank and the probability of a successful lift using a fully flexible dummy-variable specification,

\[g(\text{Rank}_{ij(s-1)}, \delta_1) = \Sigma_n \delta_1 \text{Rank}(n)_{ij(s-1)}. \]

Table 4 reports results for model (4) using alternative fixed effects specifications.\footnote{All specifications include stage-specific dummy variables. Table 4 reports only the coefficients for the first ten rank dummies. The full table is reported in Appendix A (Table A3).} The omitted rank category corresponds to the athlete ranked first, so all the rank coefficients measure the impact of being ranked n^{th} relative to being first. Figure 4 plots the estimated coefficients from Table 4.

In sharp contrast to model (1), controlling for more sources of unobserved heterogeneity has a substantial impact on the results reported in Figure 4. There is no significant correlation between interim ranking and probability of a successful lift when we control for athlete, year, and competition fixed effects separately.\footnote{Some coefficients in Table 4 are significantly different from zero, suggesting a negative impact of rank within a very small range, but these results are not robust.} However, as we progressively control for additional sources of unobserved heterogeneity, a positive and statistically significant relationship appears. This result is driven by an omitted variable bias. Individuals with higher ability are likely to be ranked towards the top, and they also perform better on average. When we do not control for
individual characteristics, the rank variable captures the impact of differences in quality, so the performance at the top of the ranking is overestimated.41

As discussed in the previous section, controlling for unobserved heterogeneity is important but does not account for the possible endogeneity of $\text{Rank}_{itj(s-1)}$. We expect a negative correlation between the lagged error term $u_{itj(s-1)}$ and $\text{Rank}_{itj(s-1)}$, since a successful lift typically implies an improvement in the interim ranking at the end of the stage (i.e., a decrease of the Rank variable). This generates a positive correlation between the change in rank ($\Delta \text{Rank}_{itj(s-1)}$) and the error term ($\Delta \eta_{itjs}$) of the model in first differences (6). Thus, we expect the fixed effects estimator to be biased upwards.

Table 5, column 1 reports the results obtained with the fixed effects estimator, where $g(.)$ is assumed to be a quadratic function of $\text{Rank}_{itj(s-1)}$.42 Column 2 reports the results for model (6) using once-lagged pre-determined regressors as instruments, whereas column 3 reports those obtained using all the available moment restrictions. Figure 5 plots the impact of interim rank on the probability of a successful lift for each estimation strategy.

There is a significant positive relationship between ranking and the probability of a successful lift, independently of the estimation strategy adopted. Conditional on the announced weight, the probability of a successful lift is at least 10 percent higher when an athlete is sixth rather than first. The relation between rank and performance is slightly concave, implying decreasing marginal effects of moving down in the ranking. The IV estimation strategies reveal that the fixed effects estimator is indeed biased upwards. The magnitude of the impact of rank is now much smaller, at least half of that obtained with the fixed effects estimator.43

41 Results using the conditional (fixed-effects) logit model show the same positive relationship between rank and success (Table A3, column 6). The impact of rank on the log-odds of a successful lift is positive and statistically significant.

42 The results do not change using higher order polynomials and the coefficients of the third and higher power of $\text{Rank}_{itj(s-1)}$ are never significantly different from zero.

43 It is not worthwhile to deliberately fail an attempt, go down in the ranking and benefit from a higher probability of a successful lift. Given the average probability of failing an attempt and the realized distribution of scores, the implied gains do not compensate the losses from forfeiting one attempt.
Finally, the results in Table 5 show that the estimated impact of $\text{Announcement}_{ijs}$ is always significantly negative, as expected. Higher announcements naturally lead to a lower probability of success, as the individual risk-reward frontier is downward sloping. On average, an increase of 1Kg in the weight implies a 1.2 percent decrease in the probability of a successful lift.

4.4 Interpretation of the impact of rank on performance

The results from model (4) imply that moving towards the top of the ranking decreases performance. One potential explanation for this surprising result is based on contextual/psychological effects. Athletes’ performance may deteriorate when the stakes are higher, or the importance of success is higher (Baumeister, 1985), or when there is more pressure from other individuals, whether friendly or not (Zajonc, 1965; Baumeister, Hamilton and Tice, 1985). Stakes are higher at the top of the ranking, as are the importance of a successful lift and the potential pressure created by the public and the media. This suggests that athletes may perform worse when ranked closer to the top. The coaches we interviewed reported that it is expected for athletes to perform systematically better in training sessions than in competitions, which suggests that psychological pressure may indeed be important.

Prestigious versus non-prestigious competitions

There is no doubt that prizes (both monetary and not) and media coverage are much higher for the Olympic Games and World Championship than for the European Championship. Thus, one would expect pressure to be higher (and hence performance to be lower) in the most prestigious competitions. Alternatively, one might expect athletes to exert more effort and perform better in more prestigious competitions. This second hypothesis is consistent with the existing literature (briefly summarized in Section 1) linking the value of prizes in contests to competitors’ effort.

44 The psychological literature suggests at least two reasons for which choking may occur in our setting. First, there may be an optimal level of arousal for performing a given task, beyond which increasing incentives may result in poorer performance (Yerkes and Dodson, 1908). Second, increased pressure may make people unconsciously switch from automatic to controlled mental processes, in spite of the fact that automatic processes provide higher performance for some types of highly rehearsed tasks (Baumeister, 1985). Sports – like weightlifting – involving repetition of the same actions are typical cases of such tasks.
We interact all explanatory variables (rank and stage binary indicators and announcement at each stage) in model (4) with a binary variable equal to one for less prestigious competitions (European Championships) and zero otherwise.45 Table 6 reports the impact of interim rank on performance in the two types of competitions (computed for the average announcement at each stage), which are also plotted in Figure 6.46

Performance is significantly lower in more prestigious competitions: the average difference in the two curves in Figure 6 is 13 percent.47 These findings suggest that psychological pressure may indeed dominate the increased effort in important competitions. Moreover, the fact that both curves in Figure 6 are upward sloping shows that the positive relation between rank and performance is robust when controlling for possible differences between the two types of competition.48

\textit{Tiredness}

An alternative interpretation for our results could be that athletes at the top of the ranking are more fatigued, having successfully lifted heavier weights, and so their performance may decrease in subsequent attempts. We find this explanation unsatisfactory for two reasons. First, it is not necessarily the case that a successful attempt is more tiring than a failed one. Hence, it is not necessarily true that athletes are more tired when ranked at the top, since an athlete may be ranked at the bottom after a series of ambitious - yet unsuccessful - attempts. Second, we re-estimate model (6) controlling for tiredness using the cumulative weight attempted in previous

45 The European Championships take place every year, whereas the World Championships alternate with the Olympic Games, taking place every four years. So there are many instances in which the same athlete can participate in both types of competitions during a single year.

46 Denote by P prestigious competitions and define the indicator variable P equal to one for prestigious competitions. Table 6 reports $\delta_n^P \text{Rank}(n)+\frac{1}{5}\sum_{s}(\lambda_s^P \text{Announcement}_s^P+\tau_s^P)$ for each rank n, both for prestigious ($P=1$) and non-prestigious competitions ($P=0$), where Announcement_s^P is the average announcement for stage s, and τ_s^P is the estimated stage-specific coefficient. Table A4 in Appendix A reports the estimated coefficients controlling for athlete-year fixed effects, which is the most restrictive specification we can use.

47 To control for self-selection of athletes into the two types of competitions, we re-estimate the same model restricting the sample to those athletes who participated in both competitions in the same year. The impact of interim rank is reported in Table 6, columns 3 and 4. The results are substantially unaffected, although the average distance between the two curves is slightly smaller (9 percent).

48 We also estimate the impact of rank on risk taking in the two types of competition, controlling for athlete-year fixed effects. We find that announcements are higher in more prestigious competitions, particularly towards the bottom of the interim ranking. Results are reported in Table A5 and Figure A2.
stages. Results from Table 7, column 2 (column 1 simply reproduces column 3 from Table 5 to ease comparison) reveal that its impact is negative but small, and that it leaves the impact of rank on performance virtually unchanged.\footnote{The impact of announcement drops, but this is simply due to the high correlation between announcement and cumulative weight attempted in previous stages. The results are unchanged when including the interaction of cumulative weight and interim rank.}

The effect of intensity of competition

In principle, performance at the top may decrease as a result of weaker incentives to perform well. This seems unlikely, since our data refers to international competitions with substantial rewards, in which athletes are likely to exert maximum effort. Still, we try to control for possible confounding factors. If incentives are lower when competition is less intense, and competition is systematically less intense at the top of the ranking, then performance may be decreasing moving towards the top of the ranking, without any psychological pressure. This hypothesis suggests controlling for intensity of the competition in model (4).\footnote{The literature suggests that effort (and therefore performance) may be affected by the intensity of competition (Ehrenberg and Bognanno, 1990).}

We estimate model (6) including our measure of intensity of the competition (as defined in Section 4.2) among the regressors. The new variable depends on the previous history of the competition, so it is treated as predetermined. Table 7, column 3 reports the results. The impact of the indicator for close competitions is negative and significant. On average, being in close competition decreases the probability of a successful lift by about 14 percent.\footnote{The impact of rank on performance remains unaffected even when we include the interaction between intensity of the competition and interim rank. The coefficient of the interaction variable is not significantly different from zero.} Most importantly, the positive impact of interim rank on performance suggests that our results are not driven by the impact of intensity of the competition on effort.

The potential gains from a successful lift

Another potential explanation for our results is that, for a given announcement, the potential gain in rank from a successful lift may increase moving towards the bottom of the ranking, leading to an increase in athlete’s effort and performance. To measure this effect we compute for
each observation the potential improvement in rank position in case of success, given the observed performance of all the other competitors.52 As expected, we find that there is an increase in the potential gain from a successful lift as one moves towards the bottom of the ranking; however, the potential gain in rank is on average small, so that individuals at the bottom of the interim ranking are extremely unlikely to reach the top positions and be awarded significant prizes.53

We re-estimate model (6) including this measure of potential gains among the regressors. Its impact on the level of performance is not statistically significant (Table 7, column 4). The impact of rank on performance is still positive and highly significant. Thus, the impact of rank on performance is unlikely to be caused by differences in incentives to exert effort at the top and at the bottom of the ranking.

\textit{Secured positions}

Some athletes may have secured their position before the end of the competition and hence may have little incentive to perform well. Since there is no penalty for not attempting the announced weight, athletes in such situations typically skip their attempt and their performance is recorded as a missing value in our data. In the raw data, there are few instances (1 percent) in which this occurred, and the corresponding observations are excluded from our sample. The issue of having secured a satisfying position is mostly relevant at the last stage of the competition. Thus, we re-estimate the model, dropping the observations for the last stage. The impact of interim rank on performance is unaffected (Table 7, column 5).

5. Conclusions

We provide evidence of how risk taking and performance change depending on the interim rank position within a tournament. First, we show that professional athletes take greater risks when ranked close enough to the first athlete, but then revert to safer strategies when ranked

52 This is equal to the athletes’ expected improvement in ranking in case of successful lift, if athletes can perfectly predict the outcome of other players’ attempts.

53 At rank 10, for example, the average gain in case of success is 1.6, at rank 20 it is 3.7, while at rank 35 it is 8.9 rank positions.
lower. This result is in line with the intuition that laggards may increase risk taking in an effort to catch up with the leaders. We also show that risk taking increases in more intense and in more prestigious competitions.

Our second set of results concerns the impact of interim rank on performance. We show that performance decreases as an athlete gets closer to the top of the interim ranking. This result cannot be explained by unobserved individual-specific heterogeneity, by differences in the intensity of the competition, potential gains from increased performance, or physical fatigue at different points in the interim rank. We also observe underperformance in more important competitions, and when competition is more intense, suggesting that underperformance close to the top may result from psychological pressure.

Although our results suggest that information on relative performance may hamper performance by increasing psychological pressure, the identification of the exact channel through which emotions affect performance remains an open question. In addition, preferences for relative status may play a role in explaining differences between the performance of interim winners and losers. Combining evidence from the field and the laboratory may shed light on these issues.

54 These results are not specific to weightlifting competitions. Genakos and Pagliero (2011) present similar results from professional athletes in competitive diving, a sport which requires a very different set of skills (agility versus physical strength).
55 For instance, Blanes i Vidal and Nossol (2009), and Azmat and Iriberri (2010) find that releasing information on relative performance increases performance in situations in which individuals are rewarded according to their absolute (not relative) performance.
56 Hannan et al. (2008) provide evidence that feedback on relative performance decreases performance on average, while Eriksson et al. (2009) find that there is no significant effect.
Bibliography

27

FIGURE 1 – THE ATHLETES’ RISK-REWARD FRONTIER

Notes: The figure describes the risk-reward frontiers for two hypothetical athletes of different ability. The better athlete is characterized by the frontier located to the right. Each competitor can improve the probability of a successful lift by increasing the quality and intensity of training before the competition, or by achieving more concentration/determination during the game. Higher psychological pressure may cause choking and reduce performance.

FIGURE 2 – THE IMPACT OF RANK ON ANNOUNCEMENT

Notes: The figure plots the estimated impact of rank on announcement (Kg). The coefficients of the binary indicators for rank positions are reported in Table 2 and Table A1. The different lines on the graph correspond to the five columns of Table 2, where we control for different sources of unobserved heterogeneity. The omitted category always corresponds to the athlete ranked first, so all the rank coefficients measure the impact of being ranked n^{th} relative to being first.
FIGURE 3 – THE IMPACT OF RANK ON ANNOUNCEMENT

Notes: The figure plots the impact of interim rank on announcement (Kg) based on the estimated coefficients from Table 3.

FIGURE 4 – THE IMPACT OF RANK ON THE PROBABILITY OF A SUCCESSFUL LIFT

Notes: The figure plots the estimated coefficients of the binary indicators for the rank position from Table 4 and Table A3. The different lines on the graph correspond to the five columns of Table 4, where we control for different sources of unobserved heterogeneity. The omitted category always corresponds to the athlete ranked first, so all the rank coefficients measure the impact of being ranked nth relative to being first.
FIGURE 5 – THE IMPACT OF RANK ON THE PROBABILITY OF A SUCCESSFUL LIFT

Notes: The figure plots the impact of interim rank on the probability of a successful lift based on the estimated coefficients from Table 5.

FIGURE 6 – THE IMPACT OF RANK ON THE PROBABILITY OF A SUCCESSFUL LIFT IN PRESTIGIOUS AND NON-PRESTIGIOUS COMPETITIONS

Notes: The figure plots the impact of interim rank (and the 95% confidence interval) on the probability of a successful lift (computed for the average announcement at each stage) in prestigious and non-prestigious competitions based on the results reported in Table 6. The impact of rank one in prestigious competitions is normalized to zero. Estimated coefficients are reported in Table A4. Calculated standard errors are clustered at the athlete level. Performance is significantly lower in prestigious competitions (joint test: F(19, 3762)=4.14, p-value=0.000).
TABLE 1 - DESCRIPTIVE STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>Snatch</th>
<th>Clean & Jerk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stage 1</td>
<td>stage 2</td>
</tr>
<tr>
<td>Announcement</td>
<td>122.404</td>
<td>125.953</td>
</tr>
<tr>
<td>average</td>
<td>128.013</td>
<td>150.570</td>
</tr>
<tr>
<td>of Success</td>
<td>0.732</td>
<td>0.570</td>
</tr>
<tr>
<td>average probability of a successful lift</td>
<td>0.397</td>
<td>0.806</td>
</tr>
<tr>
<td></td>
<td>0.557</td>
<td>0.317</td>
</tr>
<tr>
<td></td>
<td>154.808</td>
<td>156.752</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on the International Weightlifting Database corresponding to round-by-round athletes' performance data for the most well-known international weightlifting competitions (the Olympic Games, World and European Championships) from 1990 to 2006.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>Announcement_{itjs}</td>
<td>Announcement_{itjs}</td>
<td>Announcement_{itjs}</td>
<td>Announcement_{itjs}</td>
<td>Announcement_{itjs}</td>
</tr>
<tr>
<td>Rank 2</td>
<td>0.270***</td>
<td>0.275***</td>
<td>0.291***</td>
<td>0.313***</td>
<td>0.397***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.068)</td>
<td>(0.073)</td>
<td>(0.079)</td>
<td>(0.087)</td>
</tr>
<tr>
<td>Rank 3</td>
<td>0.246***</td>
<td>0.254***</td>
<td>0.298***</td>
<td>0.417***</td>
<td>0.502***</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.070)</td>
<td>(0.081)</td>
<td>(0.090)</td>
</tr>
<tr>
<td>Rank 4</td>
<td>0.531***</td>
<td>0.542***</td>
<td>0.587***</td>
<td>0.669***</td>
<td>0.738***</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.072)</td>
<td>(0.080)</td>
<td>(0.089)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>Rank 5</td>
<td>0.590***</td>
<td>0.603***</td>
<td>0.654***</td>
<td>0.748***</td>
<td>0.823***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.072)</td>
<td>(0.081)</td>
<td>(0.091)</td>
<td>(0.102)</td>
</tr>
<tr>
<td>Rank 6</td>
<td>0.654***</td>
<td>0.668***</td>
<td>0.731***</td>
<td>0.823***</td>
<td>0.891***</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.074)</td>
<td>(0.085)</td>
<td>(0.092)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Rank 7</td>
<td>0.586***</td>
<td>0.602***</td>
<td>0.674***</td>
<td>0.757***</td>
<td>0.832***</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.073)</td>
<td>(0.084)</td>
<td>(0.092)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>Rank 8</td>
<td>0.545***</td>
<td>0.563***</td>
<td>0.636***</td>
<td>0.739***</td>
<td>0.811***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.075)</td>
<td>(0.085)</td>
<td>(0.094)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>Rank 9</td>
<td>0.568***</td>
<td>0.586***</td>
<td>0.634***</td>
<td>0.758***</td>
<td>0.816***</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.078)</td>
<td>(0.088)</td>
<td>(0.096)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Rank 10</td>
<td>0.544***</td>
<td>0.561***</td>
<td>0.588***</td>
<td>0.713***</td>
<td>0.765***</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.078)</td>
<td>(0.089)</td>
<td>(0.097)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>Rank 11</td>
<td>0.471***</td>
<td>0.490***</td>
<td>0.505***</td>
<td>0.600***</td>
<td>0.635***</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.081)</td>
<td>(0.090)</td>
<td>(0.099)</td>
<td>(0.111)</td>
</tr>
<tr>
<td>Rank 12</td>
<td>0.430***</td>
<td>0.448***</td>
<td>0.463***</td>
<td>0.565***</td>
<td>0.589***</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.082)</td>
<td>(0.092)</td>
<td>(0.103)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Rank 13</td>
<td>0.431***</td>
<td>0.450***</td>
<td>0.452***</td>
<td>0.533***</td>
<td>0.560***</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.082)</td>
<td>(0.093)</td>
<td>(0.103)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>Announcement_{itj(s-1)}</td>
<td>0.979***</td>
<td>0.979***</td>
<td>0.980***</td>
<td>0.977***</td>
<td>0.978***</td>
</tr>
<tr>
<td>announcement in previous stage</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Success_{itj(s-1)}</td>
<td>4.170***</td>
<td>4.171***</td>
<td>4.177***</td>
<td>4.213***</td>
<td>4.209***</td>
</tr>
<tr>
<td>success in previous stage</td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.032)</td>
<td>(0.033)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Bodyweight_{itj}</td>
<td>0.014**</td>
<td>0.014**</td>
<td>0.016**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>athlete's bodyweight (in Kg)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home_{itj}</td>
<td>0.010</td>
<td>0.007</td>
<td>-0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>competing in home country</td>
<td>(0.057)</td>
<td>(0.057)</td>
<td>(0.082)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Competitors_{itj}</td>
<td>0.007***</td>
<td>0.004</td>
<td>0.008**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>competitors at each game</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
</tr>
<tr>
<td>Clusters</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
</tr>
<tr>
<td>Athlete FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Competition FE</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Competition-Year FE</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Athlete-Competition FE</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athlete-Year FE</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athlete-Year-Competition FE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the announcement by athlete i, in year t, in competition j, at stage s of the game. All equations include stage of the competition binary indicators. The first three columns also include country of origin binary indicators. The coefficients for ranks 14-20 are omitted; the full table is reported in Appendix A (Table A1). Standard errors clustered at the athlete level are reported in parentheses: *significant at 10%; **significant at 5%; ***significant at 1%.}

TABLE 2 - THE IMPACT OF RANK ON ANNOUNCEMENT
<table>
<thead>
<tr>
<th></th>
<th>(1) FE Announcement_{ij(s-1)}</th>
<th>(2) FD (IV) Announcement_{ij(s-1)}</th>
<th>(3) FD (GMM) Announcement_{ij(s-1)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Announcement_{ij(s-1)}</td>
<td>0.536***</td>
<td>0.727***</td>
<td>0.697***</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Success_{ij(s-1)}</td>
<td>2.738***</td>
<td>3.318***</td>
<td>2.824***</td>
</tr>
<tr>
<td>(0.071)</td>
<td>(0.133)</td>
<td>(0.096)</td>
<td></td>
</tr>
<tr>
<td>Rank_{ij(s-1)}</td>
<td>0.363***</td>
<td>1.539***</td>
<td>1.233***</td>
</tr>
<tr>
<td>(0.077)</td>
<td>(0.177)</td>
<td>(0.154)</td>
<td></td>
</tr>
<tr>
<td>Rank^2_{ij(s-1)}</td>
<td>-0.045***</td>
<td>-0.184***</td>
<td>-0.165***</td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.019)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>Rank^3_{ij(s-1)} (x 10^{-2})</td>
<td>0.168***</td>
<td>0.802***</td>
<td>0.748***</td>
</tr>
<tr>
<td>(0.046)</td>
<td>(0.092)</td>
<td>(0.086)</td>
<td></td>
</tr>
<tr>
<td>Rank^4_{ij(s-1)} (x 10^{-3})</td>
<td>-0.026**</td>
<td>-0.152***</td>
<td>-0.144***</td>
</tr>
<tr>
<td>(0.010)</td>
<td>(0.019)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>Rank^5_{ij(s-1)} (x 10^{-5})</td>
<td>0.014*</td>
<td>0.103***</td>
<td>0.099***</td>
</tr>
<tr>
<td>(0.008)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
</tr>
<tr>
<td>Clusters</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the announcement by athlete \(i\), in year \(t\), in competition \(j\), at stage \(s\) of the game. The first column is estimated using athlete-year-competition joint fixed effects. The other two columns are estimated using first differences. In column (2) we use as instruments once-lagged predetermined regressors, whereas in column (3) we use all available moment restrictions. All equations include stage of the competition binary indicators. Standard errors clustered at the athlete level are reported in parentheses in column 1. Windmeijer (2005) corrected robust standard errors based on a two-step estimation procedure are reported in parenthesis in columns 2 and 3: *significant at 10%; **significant at 5%; ***significant at 1%.
<table>
<thead>
<tr>
<th>Estimation method</th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) OLS</th>
<th>(4) OLS</th>
<th>(5) OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Pr(success)_{ijt}</td>
<td>Pr(success)_{ijt}</td>
<td>Pr(success)_{ijt}</td>
<td>Pr(success)_{ijt}</td>
<td>Pr(success)_{ijt}</td>
</tr>
<tr>
<td>Rank 2</td>
<td>-0.038* (0.020)</td>
<td>-0.040** (0.020)</td>
<td>-0.033 (0.022)</td>
<td>0.021 (0.025)</td>
<td>0.039 (0.025)</td>
</tr>
<tr>
<td>Rank 3</td>
<td>-0.056*** (0.022)</td>
<td>-0.058*** (0.022)</td>
<td>-0.042* (0.024)</td>
<td>0.041 (0.026)</td>
<td>0.070** (0.028)</td>
</tr>
<tr>
<td>Rank 4</td>
<td>-0.060*** (0.022)</td>
<td>-0.062*** (0.022)</td>
<td>-0.031 (0.025)</td>
<td>0.068** (0.027)</td>
<td>0.131*** (0.028)</td>
</tr>
<tr>
<td>Rank 5</td>
<td>-0.079*** (0.023)</td>
<td>-0.081*** (0.023)</td>
<td>-0.045* (0.026)</td>
<td>0.075*** (0.027)</td>
<td>0.149*** (0.030)</td>
</tr>
<tr>
<td>Rank 6</td>
<td>-0.051** (0.024)</td>
<td>-0.054** (0.024)</td>
<td>-0.006 (0.027)</td>
<td>0.117*** (0.029)</td>
<td>0.202*** (0.030)</td>
</tr>
<tr>
<td>Rank 7</td>
<td>-0.037 (0.024)</td>
<td>-0.041* (0.024)</td>
<td>0.018 (0.027)</td>
<td>0.148*** (0.028)</td>
<td>0.240*** (0.030)</td>
</tr>
<tr>
<td>Rank 8</td>
<td>-0.012 (0.024)</td>
<td>-0.015 (0.024)</td>
<td>0.040 (0.027)</td>
<td>0.173*** (0.029)</td>
<td>0.269*** (0.031)</td>
</tr>
<tr>
<td>Rank 9</td>
<td>-0.001 (0.024)</td>
<td>-0.005 (0.024)</td>
<td>0.061** (0.027)</td>
<td>0.207*** (0.029)</td>
<td>0.310*** (0.031)</td>
</tr>
<tr>
<td>Rank 10</td>
<td>0.015 (0.025)</td>
<td>0.013 (0.025)</td>
<td>0.082*** (0.028)</td>
<td>0.230*** (0.029)</td>
<td>0.338*** (0.031)</td>
</tr>
<tr>
<td>Announcement_{itjs} * stage2</td>
<td>-0.014*** (0.001)</td>
<td>-0.014*** (0.001)</td>
<td>-0.015*** (0.001)</td>
<td>-0.021*** (0.001)</td>
<td>-0.022*** (0.001)</td>
</tr>
<tr>
<td>Announcement_{itjs} * stage3</td>
<td>-0.013*** (0.001)</td>
<td>-0.013*** (0.001)</td>
<td>-0.014*** (0.001)</td>
<td>-0.020*** (0.001)</td>
<td>-0.021*** (0.001)</td>
</tr>
<tr>
<td>Announcement_{itjs} * stage4</td>
<td>-0.012*** (0.001)</td>
<td>-0.012*** (0.001)</td>
<td>-0.013*** (0.001)</td>
<td>-0.018*** (0.001)</td>
<td>-0.019*** (0.001)</td>
</tr>
<tr>
<td>Announcement_{itjs} * stage5</td>
<td>-0.012*** (0.001)</td>
<td>-0.012*** (0.001)</td>
<td>-0.013*** (0.001)</td>
<td>-0.018*** (0.001)</td>
<td>-0.019*** (0.001)</td>
</tr>
<tr>
<td>Announcement_{itjs} * stage6</td>
<td>-0.012*** (0.001)</td>
<td>-0.012*** (0.001)</td>
<td>-0.012*** (0.001)</td>
<td>-0.017*** (0.001)</td>
<td>-0.018*** (0.001)</td>
</tr>
<tr>
<td>Bodyweight_{itj}</td>
<td>0.009*** (0.003)</td>
<td>0.009*** (0.003)</td>
<td>0.010** (0.004)</td>
<td>0.009*** (0.003)</td>
<td>0.010** (0.004)</td>
</tr>
<tr>
<td>Home_{itj}</td>
<td>0.073*** (0.019)</td>
<td>0.074*** (0.019)</td>
<td>0.103*** (0.026)</td>
<td>0.073*** (0.019)</td>
<td>0.103*** (0.026)</td>
</tr>
<tr>
<td>Number of Competitors_{itj}</td>
<td>-0.004*** (0.001)</td>
<td>-0.005*** (0.001)</td>
<td>-0.007*** (0.001)</td>
<td>-0.004*** (0.001)</td>
<td>-0.007*** (0.001)</td>
</tr>
<tr>
<td>Observations</td>
<td>34625</td>
<td>34625</td>
<td>34625</td>
<td>34625</td>
<td>34625</td>
</tr>
<tr>
<td>Clusters</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is a binary indicator that takes the value one if the attempt to lift a given weight, by athlete i, in year t, in competition j, at stage s of the game, was successful. All equations include stage of the competition binary indicators. The first three columns also include country of origin binary indicators. The coefficients for ranks 11-20 are omitted; the full table is reported in Appendix A (Table A3). Standard errors clustered at the athlete level are reported in parentheses below coefficients: *significant at 10%; **significant at 5%; ***significant at 1%.
TABLE 5 - THE IMPACT OF RANK ON THE PROBABILITY OF A SUCCESSFUL LIFT

<table>
<thead>
<tr>
<th>Estimation method</th>
<th>(1) FE</th>
<th>(2) FD (IV)</th>
<th>(3) FD (GMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Pr(success)_{tij}</td>
<td>Pr(success)_{tij}</td>
<td>Pr(success)_{tij}</td>
</tr>
<tr>
<td>Announcement_{tij}</td>
<td>-0.012***</td>
<td>-0.009***</td>
<td>-0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Rank_{ij(s-1)}</td>
<td>0.053***</td>
<td>0.024***</td>
<td>0.028***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Rank^2_{ij(s-1)} (x 10^{-3})</td>
<td>-0.461***</td>
<td>-0.343***</td>
<td>-0.381***</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.106)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Observations</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
</tr>
<tr>
<td>Clusters</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the announcement by athlete i, in year t, in competition j, at stage s of the game. The first column is estimated using athlete-year-competition joint fixed effects. The other two columns are estimated using first differences. In column 2 we use as instruments once-lagged predetermined regressors, whereas in column 3 we use all available moment restrictions. All equations include stage of the competition binary indicators. Standard errors clustered at the athlete level are reported in parentheses in column 1. Windmeijer (2005) corrected robust standard errors based on a two-step estimation procedure are reported in parenthesis in columns 2 and 3: *significant at 10%; **significant at 5%; ***significant at 1%.
TABLE 6 - THE IMPACT OF RANK IN PRESTIGIOUS AND NON-PRESTIGIOUS COMPETITIONS

<table>
<thead>
<tr>
<th>Rank</th>
<th>(1) All athletes</th>
<th>(2) Same athletes in both competitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-prestigious</td>
<td>Prestigious</td>
</tr>
<tr>
<td>Rank 1</td>
<td>0.070* (0.040)</td>
<td>0.016 (0.055)</td>
</tr>
<tr>
<td>Rank 2</td>
<td>0.116*** (0.039)</td>
<td>0.000 (0.032)</td>
</tr>
<tr>
<td>Rank 3</td>
<td>0.160*** (0.039)</td>
<td>0.000 (0.034)</td>
</tr>
<tr>
<td>Rank 4</td>
<td>0.163*** (0.039)</td>
<td>0.048 (0.036)</td>
</tr>
<tr>
<td>Rank 5</td>
<td>0.165*** (0.040)</td>
<td>0.059* (0.036)</td>
</tr>
<tr>
<td>Rank 6</td>
<td>0.220*** (0.041)</td>
<td>0.094*** (0.037)</td>
</tr>
<tr>
<td>Rank 7</td>
<td>0.255*** (0.041)</td>
<td>0.122*** (0.037)</td>
</tr>
<tr>
<td>Rank 8</td>
<td>0.283*** (0.041)</td>
<td>0.148*** (0.037)</td>
</tr>
<tr>
<td>Rank 9</td>
<td>0.315*** (0.042)</td>
<td>0.183*** (0.037)</td>
</tr>
<tr>
<td>Rank 10</td>
<td>0.350*** (0.043)</td>
<td>0.199*** (0.037)</td>
</tr>
<tr>
<td>Rank 11</td>
<td>0.362*** (0.043)</td>
<td>0.230*** (0.037)</td>
</tr>
<tr>
<td>Rank 12</td>
<td>0.378*** (0.045)</td>
<td>0.272*** (0.038)</td>
</tr>
<tr>
<td>Rank 13</td>
<td>0.430*** (0.045)</td>
<td>0.281*** (0.038)</td>
</tr>
<tr>
<td>Rank 14</td>
<td>0.422*** (0.048)</td>
<td>0.300*** (0.038)</td>
</tr>
<tr>
<td>Rank 15</td>
<td>0.500*** (0.050)</td>
<td>0.327*** (0.038)</td>
</tr>
<tr>
<td>Rank 16</td>
<td>0.487*** (0.051)</td>
<td>0.369*** (0.039)</td>
</tr>
<tr>
<td>Rank 17</td>
<td>0.520*** (0.057)</td>
<td>0.383*** (0.041)</td>
</tr>
<tr>
<td>Rank 18</td>
<td>0.516*** (0.063)</td>
<td>0.416*** (0.040)</td>
</tr>
<tr>
<td>Rank 19</td>
<td>0.566*** (0.066)</td>
<td>0.448*** (0.042)</td>
</tr>
<tr>
<td>Rank 20</td>
<td>0.649*** (0.052)</td>
<td>0.501*** (0.036)</td>
</tr>
</tbody>
</table>

Observations 34625 7385

Clusters 3763 523

Athlete-Year FE yes yes

Notes: The table reports the impact of interim rank on the probability of a successful lift for the average announcement: \(\delta_n^{\text{Rank}} + (1/5) \sum s (\lambda_s^{\text{Announcement}*} + \tau_s^P) \) for each rank \(n \), both for prestigious \((P=1) \) and non-prestigious competitions \((P=0) \), where \(\text{Announcement}* \) is the average announcement for stage \(s \), and \(\tau_s^P \) is the estimated stage-specific coefficient. The impact of rank one in prestigious competitions is normalized to zero. The estimated coefficients using athlete-year FE are reported in Appendix A (Table A4). The sample size in the last two columns is restricted to the athletes that participated in both types of games in the same year.
TABLE 7 - THE IMPACT OF RANK ON THE PROBABILITY OF A SUCCESSFUL LIFT - ROBUSTNESS

<table>
<thead>
<tr>
<th>Estimation method</th>
<th>(1) FD (GMM)</th>
<th>(2) FD (GMM)</th>
<th>(3) FD (GMM)</th>
<th>(4) FD (GMM)</th>
<th>(5) FD (GMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Pr(success)_{ijs}</td>
<td>Pr(success)_{ijs}</td>
<td>Pr(success)_{ijs}</td>
<td>Pr(success)_{ijs}</td>
<td>Pr(success)_{ijs}</td>
</tr>
<tr>
<td>Announcement_{ij}</td>
<td>-0.011***</td>
<td>0.000</td>
<td>-0.009***</td>
<td>-0.011***</td>
<td>-0.012***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Rank_{ij(s-1)}</td>
<td>0.028***</td>
<td>0.036***</td>
<td>0.024***</td>
<td>0.023***</td>
<td>0.041***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.007)</td>
<td>(0.004)</td>
<td>(0.007)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Rank^2_{ij(s-1)} (x 10^{-3})</td>
<td>-0.381***</td>
<td>-0.475**</td>
<td>-0.299***</td>
<td>-0.368***</td>
<td>-0.616***</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.187)</td>
<td>(0.103)</td>
<td>(0.108)</td>
<td>(0.128)</td>
</tr>
<tr>
<td>Tiredness</td>
<td>cumulative kilos attempted</td>
<td>-0.001***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close Competition</td>
<td>dummy=1 if competitors' density within 10Kg radius is high</td>
<td>-0.143***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Gains</td>
<td>potential change in rank if successful</td>
<td></td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
<td>27700</td>
<td>20775</td>
</tr>
<tr>
<td>Clusters</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
<td>3763</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the announcement by athlete _i_, in year _t_, in competition _j_, at stage _s_ of the game. All equations include stage of the competition binary indicators. Column 1 simply reproduces column 3 from Table 5 to ease comparisons. In column 5 we exclude from the estimation the last stage of the competition. Hendriksen (2005) corrected robust standard errors based on a two-step estimation procedure are reported in parenthesis: *significant at 10%; **significant at 5%; ***significant at 1%.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>927</td>
<td>Nick Bloom, Luis Garicano, Raffaella Sadun, John Van Reenen</td>
<td>The Distinct Effects of Information Technology and Communication Technology on Firm Organization</td>
</tr>
<tr>
<td>926</td>
<td>Reyn van Ewijk</td>
<td>Long-term health effects on the next generation of Ramadan fasting during pregnancy</td>
</tr>
<tr>
<td>925</td>
<td>Stephen J. Redding</td>
<td>The Empirics of New Economic Geography</td>
</tr>
<tr>
<td>924</td>
<td>Rafael Gomez, Alex Bryson, Tobias Kretschmer, Paul Willman</td>
<td>Employee Voice and Private Sector Workplace Outcomes in Britain, 1980-2004</td>
</tr>
<tr>
<td>923</td>
<td>Bianca De Paoli</td>
<td>Monetary Policy Under Alternative Asset Market Structures: the Case of a Small Open Economy</td>
</tr>
<tr>
<td>922</td>
<td>L. Rachel Ngai, Silvana Tenreyro</td>
<td>Hot and Cold Seasons in the Housing Market</td>
</tr>
<tr>
<td>921</td>
<td>Kosuke Aoki, Gianluca Benigno, Nobuhiro Kiyotaki</td>
<td>Capital Flows and Asset Prices</td>
</tr>
<tr>
<td>920</td>
<td>Alex Bryson, John Forth, Patrice Laroche</td>
<td>Unions and Workplace Performance in Britain and France</td>
</tr>
<tr>
<td>919</td>
<td>David Marsden, Simone Moriconi</td>
<td>‘The Value of Rude Health’: Employees’ Well Being, Absence and Workplace Performance</td>
</tr>
<tr>
<td>918</td>
<td>Richard Layard, Guy Mayraz, Stephen Nickell</td>
<td>Does Relative Income Matter? Are the Critics Right?</td>
</tr>
<tr>
<td>917</td>
<td>Ralf Martin, Laure B. de Preux, Ulrich J. Wagner</td>
<td>The Impacts of the Climate Change Levy on Business: Evidence from Microdata</td>
</tr>
<tr>
<td>916</td>
<td>Paul-Antoine Chevalier, Rémy Lecat, Nicholas Oulton</td>
<td>Convergence of Firm-Level Productivity, Globalisation, Information Technology and Competition: Evidence from France</td>
</tr>
<tr>
<td>915</td>
<td>Ghazala Azmat, Nagore Iriberri</td>
<td>The Importance of Relative Performance Feedback Information: Evidence from a Natural Experiment using High School Students</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>914</td>
<td>L Rachel Ngai, Robert M. Samaniego</td>
<td>Accounting for Research and Productivity Growth Across Industries</td>
</tr>
<tr>
<td>913</td>
<td>Francesco Caselli, Tom Cunningham</td>
<td>Leader Behavior and the Natural Resource Curse</td>
</tr>
<tr>
<td>912</td>
<td>Marco Manacorda, Edward Miguel, Andrea Vigorito</td>
<td>Government Transfers and Political Support</td>
</tr>
<tr>
<td>911</td>
<td>Philippe Aghion, John Van Reenen, Luigi Zingales</td>
<td>Innovation and Institutional Ownership</td>
</tr>
<tr>
<td>910</td>
<td>Fabian Waldinger</td>
<td>Peer Effects in Science – Evidence from the Dismissal of Scientists in Nazi Germany</td>
</tr>
<tr>
<td>909</td>
<td>Tomer Blumkin, Yossi Hadar, Eran Yashiv</td>
<td>The Macroeconomic Role of Unemployment Compensation</td>
</tr>
<tr>
<td>908</td>
<td>Natalie Chen, Dennis Novy</td>
<td>International Trade Integration: A Disaggregated Approach</td>
</tr>
<tr>
<td>907</td>
<td>Dongshu Ou</td>
<td>To Leave or Not to Leave? A Regression Discontinuity Analysis of the Impact of Failing the High School Exit Exam</td>
</tr>
<tr>
<td>906</td>
<td>Andrew B. Bernard, J. Bradford Jensen, Stephen J. Redding, Peter K. Schott</td>
<td>The Margins of US Trade</td>
</tr>
<tr>
<td>905</td>
<td>Gianluca Benigno, Bianca De Paoli</td>
<td>On the International Dimension of Fiscal Policy</td>
</tr>
<tr>
<td>904</td>
<td>Stephen J. Redding</td>
<td>Economic Geography: A Review of the Theoretical and Empirical Literature</td>
</tr>
<tr>
<td>903</td>
<td>Andreas Georgiadis, Alan Manning</td>
<td>Change and Continuity Among Minority Communities in Britain</td>
</tr>
<tr>
<td>902</td>
<td>Maria Bas</td>
<td>Trade, Technology Adoption and Wage Inequalities: Theory and Evidence</td>
</tr>
<tr>
<td>901</td>
<td>Holger Breinlich, Chiara Criscuolo</td>
<td>Service Traders in the UK</td>
</tr>
<tr>
<td>900</td>
<td>Emanuel Ornelas, John L. Turner</td>
<td>Protection and International Sourcing</td>
</tr>
</tbody>
</table>

The Centre for Economic Performance Publications Unit
Tel 020 7955 7284 Fax 020 7955 7595 Email info@cep.lse.ac.uk
Web site http://cep.lse.ac.uk