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Abstract 
A two-sided, pair-wise matching model is developed to analyse the strategic interaction 
between two information intermediaries who compete in commission rates and network size, 
giving rise to a fragmented duopoly market structure. The model suggests that network 
competition between information intermediaries has a distinctive market structure, where 
intermediaries are monopolist service providers to some contacts but duopolists over contacts 
they share in their network overlap. The intermediaries’ inability to price discriminate 
between the competitive and non-competitive market segments, gives rise to an undercutting 
game, which has no pure strategy Nash equilibrium. The incentive to randomise commission 
rates yields a mixed strategy Nash equilibrium. Finally, competition is affected by the 
technology of network development. The analysis shows that either a monopoly or a 
fragmented duopoly can prevail in equilibrium, depending on the network-building 
technology. Under convexity assumptions, both intermediaries invest in a network and 
compete over common matches, while randomising commission rates. In contrast, linear 
network development costs can only give rise to a monopolistic outcome. 
 
Keywords:  International Trade, Pairwise Matching, Information Cost, Intermediation, Networks. 
JEL Classification:  F10, C78, D43, D82, D83, L10 
 
This paper was produced as part of the Centre’s Globalisation Programme.  The Centre for 
Economic Performance is financed by the Economic and Social Research Council. 
 
 
Acknowledgements 
I would like to thank the ESRC for their financial support and Steve Redding, Tony 
Venables, Peter Neary, Alejandro Cunat, Henry Overman, and Gilles Duranton for their 
invaluable comments. Moreover I would also like to thank all seminar and conference 
participants at the London School of Economics, and elsewhere, for their feedback. 
 Dimitra Petropoulou is an Associate of the Globalisation Programme at the Centre for 
Economic Performance, London School of Economics. She is currently a Lecturer in Economics 
at Hertford College, University of Oxford. 
 
 
Published by 
Centre for Economic Performance 
London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 
 
All rights reserved.  No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means without the prior permission in writing of 
the publisher nor be issued to the public or circulated in any form other than that in which it 
is published. 
 
Requests for permission to reproduce any article or part of the Working Paper should be sent 
to the editor at the above address. 
 
© D Petropoulou, submitted 2007 
 
ISBN 978-0-85328-248-8 



1 Introduction
This paper develops a two-sided, pairwise matching model to analyse the ef-
fects of competition between intermediaries on endogenous network-building.
The simplest framework within which to undertake such an analysis is the case
of two trade intermediaries competing in network size and commission rates.
The model analyses the strategic interaction between two information interme-
diaries with symmetric access to an information technology that allows them
to develop contacts with importers and exporters seeking to form unique trade
matches. The intermediation analysed takes the form of information interme-
diation, where the role of intermediaries is to facilitate matching in a market
with information frictions. Intermediaries thus seek to match members of their
network of contacts for a success fee.
The related literature on competition between information intermediaries is

limited to relatively few contributions, where these focus on competing ‘cyber-
mediaries’ who seek to match two sides of a market on the Internet (Caillaud
and Jullien, 2001, 2003). The main role of intermediaries in this literature is to
gather and process information on users that visit their website so as to assist
buyers and sellers in matching through their web service. This literature focuses
on the effects of competition between online intermediaries in the presence of
asymmetric network externalities where the value of an intermediary to a buyer
depends on the number of sellers or goods that can be accessed through the in-
termediary (e.g. access to books through Amazon versus a smaller online seller).
The literature discusses different pricing rules and contractual arrangements be-
tween users and intermediaries and contrasts the effects with the findings of the
traditional literature on network competition (for example, Katz and Shapiro,
1985).
This paper examines a framework of competition in information intermedi-

ation that differs from this literature. The focus of the model is the endogenous
network investment decision of competing intermediaries, which in turn affects
the nature of competition between them. While the importance of network size
for competition is addressed in the literature, this is explored in the context
of network externalities, whereby an intermediary that offers wider access to
trading partners is considered more valuable to traders. The analysis in this
paper does not consider network externalities of this kind. Moreover, there are
no asymmetries built into the model (although asymmetries between intermedi-
aries may arise in equilibrium). In fact, the model assumes that traders receive
intermediation offers by intermediaries after uncertainty about matching possi-
bilities is resolved. That is, traders who find themselves in a position to choose
between the two competing intermediaries, do so in the knowledge that a match
with their unique trading partner is possible.
The model focuses on the competition between intermediaries in commission

rates and the coordination game played by trading partners who must select be-
tween intermediaries. The competition between intermediaries gives rise to a
distinctive market structure as a result of network overlap and the inability to
price discriminate between groups of network members. In particular, inter-
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mediaries are monopolist service providers to some contacts but duopolists over
contacts they share in their network overlap. The paper thus models competition
between information intermediaries as a fragmented duopoly with a competi-
tive and a non-competitive segment, which gives rise to an undercutting game
in commission rates with no pure strategy Nash equilibrium.
To the best of my knowledge there is no literature that examines competition

in endogenous network formation in this way. A few references in the Industrial
Organisation literature consider markets with similar characteristics. Baye and
De Vries (1992) develop a model with brand loyal consumers and price-sensitive
consumers, in a market where price discrimination is not possible. They too
find no pure strategy Nash equilibrium in prices.
Beard, Ford, Hill and Saba (2005) build a model directly applicable to ca-

ble television service competition, in which cable networks overlap, but price
discrimination across users is not possible. They do find a pure strategy Nash
equilibrium in prices, despite the fragmented nature of the market, as a result of
smoothness conditions that ensure demand is decreasing in price in both market
segments. The network overlap itself is exogenous in Beard, Ford, Hill and Saba
(2005), while the distribution of brand loyal versus price sensitive consumers is
also arbitrary in Baye and De Vries (1992). In contrast, intermediaries’ network
sizes are endogenous in the model developed in this paper.
The rest of the paper proceeds as follows. Section 2 describes the economic

environment and describes the timing of the game between traders and interme-
diaries. The subgame perfect equilibrium is characterised in Section 3. Section
4 provides two illustrative examples. Section 5 concludes.

2 Economic Environment
Consider a two-sided market where a continuum of risk-neutral importers (M)
and a continuum of exporters (X), each distributed uniformly and with unit
density over [0, 1] ,match uniquely to exchange a single unit of output generating
joint surplus S > 0. There is two-sided information asymmetry as traders
regarding the location of trading partner on the continuum. Due to the infinite
number of importers (and exporters) along the continuum, the probability of
any trader j locating her partner through random selection is 0.
Each pair (Xj ,Mj) may match through a direct matching technology, which

achieves successful matching with probability q(i), where i reflects the level of
information costs or barriers to information flow between the two sides of the
market and i ∈ [0, 1]. Let q0(i) < 0, q(1) = 0 and q(0) = 1. This direct matching
technology could reflect a search process whose success hinges on the state of
information technology.
Alternatively, traders may match through a trade intermediary. Suppose

there are two intermediaries, A and B, with access to the same technology for
developing a network of contacts. The network of intermediary I is denoted
by a measure of importer contacts, PMI , and exporter contacts, PXI , where
PMI ∈ [0, 1] and PXI ∈ [0, 1], respectively, for I = {A,B}. Given network
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size, the measure of feasible trade matches depends on the degree of overlap
between importer and exporter contacts and is a random variable. For any
given network investment, expected matches are maximised through symmetric
contact-building in the two sides of the market. Hence intermediaries ensure
PMI = PXI ≡ PI ∀I, where PI ∈ [0, 1].
Network set-up costs are assumed to be zero, for simplicity. Let C (PI)

denote the total investment cost for a symmetric network of size PI on either
side of the market. The network investment decisions of intermediaries are
analysed under two cost specifications:

(a) Linear costs: C (PI) = 2PIc, where c > 0.

(b) Convex costs: C (PI) = 2PIc(i, PI), where c(i, PI) = γiαP 2I and α ≥ 1,
γ > 0.

For simplicity, it is assumed costless to match trade pairs from within the
network of contacts. Hence, each intermediary has a marginal cost of interme-
diation equal to zero. Intermediaries receive a success fee or commission for
each intermediated trade match. Let αA and αB denote the commission rates
of intermediaries A and B, respectively, where αA ∈ [0, 1] and αB ∈ [0, 1]. The
marginal revenue from intermediation is thus αAS and αBS for A and B, re-
spectively. Residual trade surplus is assumed to be shared equally between the
importer and exporter.
The demand for each intermediary’s services depends on two factors. First,

the network size decisions of the two intermediaries. A larger network size gives
rise to a larger measure of expected matches through the network, but also
increases the expected overlap between networks. Expected overlap gives rise
to an expected measure of common matches that can be intermediated through
either network and for which intermediaries compete. Second, traders with
access to both trade networks must choose between the intermediaries ex post
and play a coordination game.

2.1 Timing of the Game

Intermediaries and traders interact strategically in a multi-stage game. The
timing of the game is as follows.

Stage 1 - Network investment: Intermediaries A and B simultaneously and
non-cooperatively choose network sizes PA and PB. Network investment
costs are sunk.

Stage 2 - Commission setting: Intermediaries simultaneously and non-cooperatively
commit to commission rates αA and αB, respectively.

Stage 3 - Intermediation offers: Uncertainty over which trade matches are
feasible through each network is resolved. Each intermediary makes a
take-it-or-leave-it intermediation offer to traders that can be matched,
specifying his commission rate. Successful matching is conditional on both
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trade partners accepting an offer by the same intermediary. Traders accept
at most one offer.

Stage 4 - Indirect trade: Indirect trade takes place through A and/or B.

Stage 5 - Direct trade: Any unmatched traders trade directly with proba-
bility q(i).

2.2 Equilibrium Concept

The solution concept used is subgame perfect equilibrium (SPE) and the method
used is backward induction. A strategy for intermediary I is described by a
pair {PI , αI}. An offer acceptance strategy for trader j is described by a pair
{Ra, Rs}, where Ra is a rule for determining whether an intermediation offer
is acceptable and Rs is a rule for selecting between acceptable offers. A set
of strategy pairs, for intermediaries and traders, respectively, can be said to
form an equilibrium of the game if these maximise the expected profit of each
intermediary and the expected surplus from trade of each trader, given the
strategies of all other players.
The subgame perfect equilibria of the game are characterised over the next

sections.

3 Traders’ Incentives
Traders select their offer acceptance strategy to maximise their expected payoff
taking intermediaries strategies as given. Each trader in receipt of one or more
offers must decide whether to accept one (or none) of the offers of intermediation.
If all offers are rejected in stage 3 then trade can only take place directly in
stage 5 of the game with probability q(i). The expected payoff from the direct
trade route represents the outside option available to all traders and forms the
benchmark against which all intermediation offers are assessed. Equilibrium
rule Ra summarises this assessment through a participation constraint.
Although uncertainty about available matching opportunities is resolved at

the time of traders’ decision-making, indirect trade between matching trade
partners is not guaranteed. The uncertainty in the outcome of the model arises,
in part, from the coordination game played by traders in receipt of two offers
of intermediation. Equilibrium rule Rs summarises the incentives for selecting
between available offers of intermediation, when both of these are acceptable.
Since traders cannot communicate their intentions, there is a non-zero proba-
bility of coordination failure as a result of mismatch in coordination decisions.
The incentives of traders at each decision node of the game are examined in

turn.
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3.1 Stage 5 - Direct Trade

The pool of traders who attempt to match directly in stage 5 are those who either
(a) receive no offers of intermediation , (b) accept no offers of intermediation,
and (c) accept one offer but fail to match as a result of coordination failure.
Since importers and exporters are assumed to match uniquely, any unmatched
trader j can be assured that her trading partner is also a member of the pool
of unmatched traders. The probability of a direct match, q(i), depends on the
prevailing, level of information costs, reflected in parameter i. Assuming trade
surplus is shared equally between trading partners, the expected payoff from
direct trade of any trader j is given by:

EDT (Πj) =
1

2
q(i)S (1)

A monopolist intermediary sets his commission rate at 1 − q(i), thereby
leaving traders indifferent between direct and indirect trade. Let αM denote
the monopoly commission rate, where αM = 1 − q(i). Expressing (1) in terms
of αM gives:

EDT (Πj) =
1

2

¡
1− αM

¢
S (2)

The expected payoff from direct trade reflects traders’ outside option. All
offers of intermediation must generate an expected payoff at least as good as
EDT (Πj) in order to be acceptable. Interpreting equation (2), duopolist in-
termediaries must offer traders an expected payoff from indirect trade at least
as good as that which would have been received under a monopolistic market
structure.

3.2 Stage 3 - Intermediation Offers

In stage 3, traders Xj and Mj find themselves in one of four positions:

(1) Pair (Xj ,Mj) cannot match through either intermediary.

(2) Pair (Xj ,Mj) can match through A, but not B; traders receive one offer
from A.

(3) Pair (Xj ,Mj) can match through B, but not A; traders receive one offer
from B.

(4) Pair (Xj ,Mj) can match through either A or B; traders receive two in-
termediation offers.

If in (1), then Xj and Mj have no option but direct trade in stage 5. If in
position (2)-(4), then Xj and Mj contrast the expected payoff from each offer
received against the expected payoff from direct trade.
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Let ΠAj denote the payoff of trader j from indirect matching through A and
ΠBj the payoff through B, where these are given by (3) and (4), respectively:

ΠAj =
1

2
(1− αA)S (3)

ΠBj =
1

2
(1− αB)S (4)

It follows directly from (2), (3) and (4), that if αA ≤ αM , then intermediation
through A is acceptable and if αB ≤ αM , then intermediation through B is
acceptable. In general, all offers must satisfy the participation constraint αI ≤
αM in order to be acceptable.
In the case whereXj andMj receive only one offer, the optimal selection rule

is thus to accept the unique acceptable offer. The optimal acceptance strategy
conditional on one offer being received is thus ‘accept offer I if αI ≤ αM ; reject
otherwise’. The next section examines the selection decision of traders in receipt
of two offers.

3.2.1 The Trader Coordination Subgame

Consider a trade pair (Xj ,Mj) that can match through either A or B. In stage
3, Xj and Mj each receive two offers of intermediation. They apply optimal
rule Ra to assess the acceptability of each offer. Since expected payoffs are
symmetric for both traders, their assessment of offers is identical.
If both offers are deemed unacceptable, Xj and Mj reject both offers and

can expect to receive EDT (Πj) in stage 5. If one offer is acceptable and the
other unacceptable, then the optimal decision is for Xj and Mj to reject the
unacceptable offer and trade indirectly in stage 4. Hence, in the case of one
acceptable offer, there is no possibility of coordination failure.
If both received offers prove to be acceptable for Xj and Mj , then each

trader j must choose between them. This gives rise to a coordination game
between Xj and Mj . As with all games of this class, there are three equilibria,
two symmetric pure strategy Nash equilibria (both choose A or both choose B)
and one symmetric mixed strategy Nash equilibrium, where both traders choose
A (or B) with the same probability.
If both Xj and Mj accept A in stage 3, then each receives ΠAj . If they both

accept B, then each receives ΠBj . If one accepts B and the other A, then indirect
trade cannot take place due to coordination failure. Thus mismatch can arise
in the model even though both traders are members of both networks and both
offers are acceptable. If coordination failure takes place, traders can expect to
receive expected payoff EDT (Πj). Table (1) describes the payoff structure of
the coordination game:

For both offers to be acceptable, it must be the case that αA ≤ αM and
αB ≤ αM are satisfied. This allows the payoffs in table (1) to be ranked,
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Mj

A B

Xj

A S
2 (1− αA) ,

S
2 (1− αA)

S
2

¡
1− αM

¢
, S
2

¡
1− αM

¢
B S

2

¡
1− αM

¢
, S
2

¡
1− αM

¢
S
2 (1− αB) ,

S
2 (1− αB)

Table 1: Traders’ Coordination Game

confirming (A,A) and (B,B) as the two pure strategy Nash equilibria of the
coordination game. Either both traders accept A, or both accept B.
Allowing traders to randomise over A and B, such that Xj accepts A with

probability λ (and B with 1 − λ) and Mj accepts A with probability µ (and
B with 1 − µ), it is straightforward to show1 the coordination game has one
symmetric mixed strategy Nash equilibrium (λ∗, µ∗) where:

λ∗ = µ∗ =
αM − αB

2αM − αB − αA
(5)

Combining (5) and the pure strategy payoffs allows the expected payoff for
each trader j in the the mixed strategy Nash equilibrium to be computed:

E(Πj)|λ∗,µ∗ =
S

2

∙
αM − αB

2αM − αB − αA
(1− αA) +

αM − αA
2αM − αB − αA

¡
1− αM

¢¸
(6)

We can now distinguish between three cases: (a) αA < αB, (b) αB < αA
or (c) αA = αB . If either (a) or (b) holds, then the game between Xj and Mj

becomes a Ranked Coordination game, which has the additional feature that
the equilibria can be Pareto ranked.
Consider case (a) where αA < αB . If intermediary A offers to match pair

j for a lower commission than B, then the payoffs received from pure strategy
Nash equilibrium (A,A) dominate those from (B,B). By inspection of (6) it
can also be observed that E(Πj)|λ∗,µ∗ < ΠAj . Hence pure strategy Nash equilib-
rium (A,A) is Pareto superior to the other Nash equilibria of the coordination
game. It can thus be said that although there are three equilibria, the pure
strategy Nash equilibrium (A,A) offers a compelling focal point2 of the Ranked
Coordination game when αA < αB.

1A derivation of the symmetric mixed strategy Nash equilibrium, and associated expected
payoff, of the coordination game is included in Appendix A.

2The game theory literature points to a number of mechanisms for resolving the multiplicity
of equilibria in the Ranked Coordination game so that focal pure Nash equilibria emerge as
the unique solution. These include communication or signalling between coordinating parties
to indicate the action to be taken. In light of the information barriers that underpin the
model, such communication is prohibited by assumption. If unique pairs of traders could
communicate their actions to each other then there would be no need for an intermediary.
Other mechanisms include mediation where an outside party imposes a solution.
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Similar arguments apply in case (b), which lead to the result that (B,B) is
Pareto superior to the other two Nash equilibria providing a focal point of the
coordination game when αB < αA.
In case (c), where αA = αB , both pure strategy Nash equilibria yield sym-

metric payoffs and λ∗ = µ∗ = 1
2 . Since the two intermediaries are indistinguish-

able and there is no way for trade partners to indicate their action to each other,
the mixed strategy Nash equilibrium provides a compelling focal point of the
game when αA = αB .
The multiplicity of equilibria implies there is a multiplicity of selection rules

Rs that are optimal for each trader in pair j, given the strategies of the other
players. For example, if all traders follow the selection rule ‘always accept A
when two acceptable offers are received’, then the outcome of their actions is
(A,A) and no trader j ever finds it optimal to deviate from the rule.
Let the ‘focal strategy’ refer to the selection rule Rs, which specifies an action

for each trader j to follow in each of the three cases (a) to (c), that leads to
the focal point in each case. This rule gives rise to the most intuitive and likely
outcome of the stage 3 coordination game. Specifically, that each trader in pair
j simultaneously and non-cooperatively accepts the most inexpensive of two
acceptable indirect trade routes when commissions differ across intermediaries,
and flips a coin when commission rates are the same across intermediaries. Its
conceptual appeal aside, the focal rule gives rise to strategic interactions between
intermediaries that do not arise if one of the two intermediaries is always selected
in stage 3, irrespective of commission rates. To explore the effects of competition
in overlapping matches, we examine the subgame perfect equilibrium of the game
that includes the focal strategy Rs as part of the equilibrium strategy of traders.
The focal selection strategy Rs can thus be summarised as follows for trader

j: If two acceptable offers are received and αA 6= αB, then accept the offer with
the lower commission rate with probability 1; if αA = αB, then accept offer A
with probability 1

2 .
To confirm that randomisation when αA = αB does not give rise to an un-

acceptable expected payoff, consider that coordination is at A with probability
1
4 , and at B with probability 1

4 . Mismatch occurs with probability
1
2 . More-

over, αA = αB implies that ΠAj = Π
B
j ≡ Πj . Hence the expected payoff when

commissions are equal, which follows directly from (6), is given by (7):

E(Πj)|αA=αB≤αM = E(Πj)|λ∗=µ∗= 1
2
=
1

2
Πj +

1

2
EDT (Πj) (7)

≥ EDT (Πj)

Hence the selection rule Rs in the case of two acceptable offers is consistent
with the participation constraints of both traders.

3.3 Traders’ Offer Acceptance Strategy

The analysis of traders’ optimal incentives is summarised by proposition (1).
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Proposition 1 The following pair {Ra, Rs} forms an optimal acceptance strat-
egy for each trader j:
Ra : Any offer k is acceptable if αI ≤ αM and unacceptable otherwise.
Rs : If one acceptable offer is received, accept it; if two acceptable offers are re-
ceived and αA 6= αB, then accept the offer with the lower commission rate with
probability 1; if two acceptable offers are received and αA = αB, then accept
offer A with probability 1

2 .

Proof. The optimality of Ra follows directly from equations (2), (3) and (4).
The optimality of Rs in the case of one acceptable offer also follows directly from
these. The optimality of Rs given two acceptable offers and αA 6= αB follows
from the payoffs in table (1). The optimality of Rs when αA = αB follows from
the mixed strategy Nash equilibrium of the coordination game, described by (5)
and from the expected payoff under randomisation given by (7).

4 Stage 2 - Nash Equilibrium in Commission
Rates

In stage 2, intermediaries simultaneously and non-cooperatively select commis-
sion rates, αA and αB , respectively, to maximise their expected profit, taking
each others’ commission rate, network sizes PA ∈ [0, 1] and PB ∈ [0, 1] and
{Ra, Rs} as given.
The strategic interaction between intermediaries in the commission-setting

game hinges on two conflicting incentives. On the one hand, a lower commission
rate makes it more likely that the intermediary’s offer is selected by traders in
receipt of two acceptable offers. At the same time, a lower commission implies
lower profit per successful match.
The measure of trade matches possible through a network of a given size is

a random variable that depends on the degree of overlap between importer and
exporter contacts. A crucial feature of the game is that intermediaries set com-
mission rates prior to the realisation of this random variable and thus without
knowing the identity of their future customers. This prevents intermediaries
from price discriminating between trade pairs3 that are exclusive to their own
network and those common to both networks.
To assess intermediaries’ incentives in the commission-setting game the struc-

ture of traders’ demand for intermediation services needs to be characterised.
3All decisions of intermediaries are thus made on the basis of expectations. The ex post

realisation of trade matches can differ markedly from the ex ante expectation. For example,
if PA = PB = 1

2
, the measure of expected common matches is P 2AP

2
B = 1

16
. The realised

overlap between the two networks can range from 0 to 1
2
, however, depending on which

specific importers and exporters are contacted in stage 1. The obvious exception is where
PA = PB = 1 for which expected and realised trade matches coincide.
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4.1 Demand for Intermediation Services

For an intermediary to be able to match pair (Xj ,Mj), both partners must be
members of the intermediary’s network. The matching probabilities for any pair
(Xj ,Mj) are therefore given by (8) to (11):

Pr [Pair j can match via A and B] = P 2AP
2
B (8)

Pr [Pair j can match via A, but not B] = P 2A
¡
1− P 2B

¢
(9)

Pr [Pair j can match via B, but not A] = P 2B
¡
1− P 2A

¢
(10)

Pr [Pair j cannot match via A or B] =
¡
1− P 2A

¢ ¡
1− P 2B

¢
(11)

Suppose both intermediaries choose network sizes between 0 and 1. The
market structure that results is one of fragmented duopoly. Each intermediary
has a set of exclusive matches, over which there is monopoly power. At the same
time, the non-zero probability of network overlap gives rise to a set of expected
common matches, over which intermediaries compete.
The success of each intermediary in gaining trade matches from the compet-

itive network overlap depends on relative commission rates. From Rs interme-
diaries anticipate that all common matches are won by the intermediary with
the lower of the two commission rates when αA 6= αB, while each expects to
win 1

4 of common matches when αA = αB.
Let E (TA) denote expected indirect trade through A or, equivalently, ex-

pected demand for A’s intermediation services. Similarly, E (TB) denotes ex-
pected indirect trade through B or expected demand for B’s intermediation
services. Combining the matching probabilities in (8) to (11) with {Ra, Rs}
yields E (TA) and E (TB), conditional on αA and αB.
Consider the expected demand for A’s services. Intermediary A expects

a measure P 2A
¡
1− P 2B

¢
of exclusive matches while common matches between

A and B are given by measure P 2AP
2
B. If αA < αB ≤ αM , then A provides

the most inexpensive trade route, so all matching traders in the competitive
segment coordinate at A. This yields a total expected demand for A of P 2A.
Conversely, if αB < αA ≤ αM all common matching traders coordinate at B
giving intermediary A an expected demand of P 2A

¡
1− P 2B

¢
only. If αB = αA ≤

αM , then intermediaries’ offers are acceptable but indistinguishable, so traders
randomise over A and B in the coordination stage. 1

4P
2
AP

2
B are expected to

trade through A, another 1
4P

2
AP

2
B through B, while the remaining 1

2P
2
AP

2
B fail

to coordinate.
Similar arguments can be applied to B. The structure of E (TA) and E (TB)

summarised below gives rise to the strategic incentives discussed in the rest of
the section.

E (TA) =

⎧⎪⎪⎨⎪⎪⎩
P 2A if αA < αB ≤ αM

P 2A
¡
1− P 2B

¢
if αB < αA ≤ αM

P 2A
¡
1− 3

4P
2
B

¢
if αB = αA ≤ αM

0 if αA > αM
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E (TB) =

⎧⎪⎪⎨⎪⎪⎩
P 2B if αB < αA ≤ αM

P 2B
¡
1− P 2A

¢
if αA < αB ≤ αM

P 2B
¡
1− 3

4P
2
A

¢
if αB = αA ≤ αM

0 if αB > αM

Recall that network investment costs are sunk in stage 1. Moreover, the
marginal cost of matching is assumed to be zero for simplicity. If follows that
the expected operating profit of A and B, respectively, are given by (12) and
(13):

E (ΠA) = αASE (TA) (12)

E (ΠB) = αBSE (TB) (13)

Intermediaries thus choose αA and αB to maximise E (ΠA) and E (ΠB),
respectively, given E (TA) and E (TB).

4.2 Polar Cases of Market Structure

The discussion above assumes network sizes between 0 and 1. In general, the
commission-setting game can be analysed for three polar cases:

1. Monopoly in intermediation services, where {PB = 0;PA ∈ [0, 1]}
or {PA = 0;PB ∈ [0, 1]}. Inspection of E (TA) confirms that expected in-
direct trade collapses to P 2A when αA ≤ αM and 0 otherwise when PB = 0,
and vice versa if B is a monopolist.

2. Bertrand duopoly in intermediation services, where {PA = 1;PB = 1}. If
both intermediaries’ networks span the entire market, then networks over-
lap entirely giving rise to the most competitive market outcome. Interme-
diaries are in direct competition for all trade pairs.

3. Fragmented duopoly in intermediation services, where {PA ∈ (0, 1) ;PB ∈ (0, 1)}.
Each intermediary’s demand is partitioned between a competitive and non-
competitive segment.

The two competitive cases are analysed in turn.

4.3 Competing in Commission Rates: Bertrand Duopoly

Let PA = PB = 1. All trade pairs are common to A and B giving rise to the
following demand structure:

E (TA) =

⎧⎪⎪⎨⎪⎪⎩
1 if αA < αB ≤ αM

0 if αB < αA ≤ αM
1
4 if αB = αA ≤ αM

0 if αA > αM

E (TB) =

⎧⎪⎪⎨⎪⎪⎩
1 if αB < αA ≤ αM

0 if αA < αB ≤ αM
1
4 if αB = αA ≤ αM

0 if αB > αM

12



Expected operating profits for A and B when αB = αA are thus:

E (ΠA)|αB=αA = αA
S

4
(14)

E (ΠB)|αB=αA = αB
S

4
(15)

Expected operating profits for A and B when αB < αA are thus:

E (ΠA)|αB<αA = 0 (16)

E (ΠB)|αB<αA = αBS (17)

Conversely, when αA < αB:

E (ΠA)|αA<αB = αAS (18)

E (ΠB)|αA<αB = 0 (19)

Intermediaries provide a homogeneous service in a price-setting Bertrand
duopoly. The pattern of E (ΠA) and E (ΠB) provides an incentive for interme-
diaries to undercut each other in order to win the entire market. In contrast to
the classical Bertrand duopoly, coordination failure in traders’ decisions implies
that intermediaries share half the market when αB = αA, instead of sharing
the entire market.
Let αC denote the ‘competitive’ commission rate where E (ΠA) = E (ΠB) =

0. In the absence of a marginal cost of matching, αC = 0, giving rise to a unique
Nash equilibrium in commission rates at αB = αA = αC = 0. The Bertrand
duopoly outcome is summarised by proposition (2).

Proposition 2 If PA = PB = 1, then the commission-setting subgame has a
unique, pure strategy Nash equilibrium where αB = αA = αC = 0.

Proof. To prove that αB = αA = αC = 0 is the unique, pure strategy Nash
equilibrium of the game we show that αB = αA = α0 > αC can never be an
equilibrium. The proof is by contradiction. Let (αA, αB) = (α0, α0), where α0 >
αC . If A deviates from (α0, α0) by undercutting B, then E (ΠA)|αA=α0−ε =

S (α0 − ε), where E (ΠA)|αA=α0−ε → Sα0, as ε → 0. Since E (ΠA)|αA=α0 =
1
4S (α0), it follows that E (ΠA)|αA=α0−ε > E (ΠA)|αA=α0 . It is thus profitable
for intermediary A to undercut from α0 > αC . Likewise, E (ΠB)|αB=α0−ε <

E (ΠB)|αA=αA−ε. Hence, αB = αA = α0 > αC cannot be an equilibrium.

4.4 Competing in Commission Rates: Fragmented Duopoly

Let PA ∈ (0, 1) and PB ∈ (0, 1). This gives rise to a distinctive market structure
comprised by a competitive and a non-competitive market segment between
which price discrimination is not possible. Hence intermediaries are neither
pure monopolists, nor pure duopolists. Consider the incentives of intermediary

13



A when setting αA. In the fragmented duopoly, in contrast to the Bertrand
duopoly case, A never finds it optimal to set αA = αC = 0, given αB < αM .
This is due to the fact that A can always relinquish the common trade matches
to B and set the monopoly commission rate. The only traders that accept A’s
offers at αA = αM , given αB < αM , are traders in receipt of an A offer only.
Let EM (ΠA) denote the expected profit from A’s monopolistic market segment
corresponding to this strategy. It follows directly from E (TA) that:

EM (ΠA) = αMSP 2A
¡
1− P 2B

¢
(20)

Profit level EM (ΠA) is always an option for A, introducing a positive lower
bound to the profits A receives in the commission-setting game.
If A sets αA = α0 then the most profit A can ever expect to earn is

E (ΠA)|α0<αB = α0SP
2
A, in the event that α0 < αB. Contrasting E (ΠA)|α0<αB

with EM (ΠA) reveals that α0 ≥
¡
1− P 2B

¢
αM must be satisfied in order for A

to find it optimal to charge α0, given αB. If conversely, α0 <
¡
1− P 2B

¢
αM , then

the maximum expected profit that A can receive by setting α0 is lower than the
profit from A’s outside option, and hence α0 is never optimal.
Let bαA denote the threshold level of αA at whichmaxE (ΠA)|αA = EM (ΠA).

Hence: bαA = ¡1− P 2B
¢
αM (21)

It follows that if αA < bαA, then the maximum profit that A can ever expect
to generate from intermediation service provision overall is less than that under
monopolistic commission setting that yields EM (ΠA). Hence, A never charges
a commission below bαA.
Furthermore, given Ra, A never finds it optimal to set αA > αM since all

its offers are subsequently rejected. The elimination of dominated strategies of
A, conditional on PA, yields αA ∈

£bαA, αM¤.
Similar arguments for B yield the following outside option for B:

EM (ΠB) = αMSP 2B
¡
1− P 2A

¢
(22)

Let bαB denote the threshold level of αB at whichmaxE (ΠB)|αB = EM (ΠB).
Hence: bαB = ¡1− P 2A

¢
αM (23)

Symmetric arguments for B allow the elimination of dominated strategies,
thereby yielding αB ∈

£bαB , αM¤. Note that, in general, the threshold levels are
not symmetric since network sizes can be asymmetric in stage 1.
Consider how the threshold level of B is affected by the network size of A.

The lower is PA then the smaller the measure of common matches between A
and B and thus the smaller the loss of trade matches from a deviation to the
monopolistic strategy. Thus the attractiveness ofB’s outside option is increasing
as PA → 0 making B less inclined to undercut A, thereby raising the deviation
threshold level bαB . At the limit, when PA = 0, it follows directly from equation
(23) that bαB = αM . In other words, the smaller is PA, ceteris paribus, then

14



the weaker are competitive forces between A and B, inducing B to set αB more
monopolistically. At the one extreme, where PA = 0, there is no competition, so
B sets the monopoly commission. At the other extreme, where PA = 1, there is
no monopolistic segment, yielding the Bertrand pure strategy Nash equilibrium
in which B sets the competitive commission rate.
The partitioned market structure is thus a hybrid of the two extremes of

monopoly and Bertrand duopoly that gives rise to conflicting monopolistic and
competitive forces. The combined effect of these forces is to make any fixed pair
of commission rates (αA, αB) unstable. There is thus no pure strategy Nash
equilibrium in commission rates when PA ∈ (0, 1) and PB ∈ (0, 1).
The conflicting incentives are illustrated in figure (1). The figure illustrates

the case where PA > PB and thus bαA > bαB. Consider the incentives of A. The
optimal response to αB > αM is to set αA = αM ; but if αA = αM , then B
has an incentive to undercut A for αA ∈ (bαB, αM ]. A also has an incentive to
undercut B for αB ∈ (bαA, αM ], driving down commission rates. A’s incentive to
undercut is restrained, however, by the existence of A’s outside option. Hence,
once αB reaches bαA > bαB, A finds it optimal to deviate to αA = αM ; but if
αA = αM , then B has an incentive to undercut A...and so on.

αM

αM

1

10

αB

αA

^

^ αB

αA

αA(αB)

αB(αA)

Figure 1: Strategic commission-setting in the fragmented duopoly.

The analysis is summarised by proposition (3).

Proposition 3 If PA ∈ (0, 1) and PB ∈ (0, 1), then the commission-setting
subgame has no pure strategy Nash equilibrium in commission rates.
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Proof. Proof is by contradiction. Let (α∗A, α
∗
B) reflect a pair of commission

rates that constitute a pure strategy Nash equilibrium, where α∗A ∈
£bαA, αM¤

and α∗B ∈
£bαB, αM¤. Consider the optimal response of A to α∗B , where α∗B takes

the following values: (a) bαA < α∗B ≤ αM and (b) α∗B = bαA < αM .
(a) If bαA < α∗B ≤ αM , then the optimal response of A is to undercut B
by ε, where ε → 0. The expected profit from A’s undercutting strategy is
E (ΠA)|αA=α∗B−ε

= (α∗B − ε)SP 2A → α∗BSP
2
A, where α

∗
BSP

2
A > α∗BSP

2
A

¡
1− 3

4P
2
B

¢
=

α∗B E (ΠA)|αA=α∗B
. Hence, A receives a higher expected profit from undercut-

ting B by ε, than from matching α∗B. It follows that A’s optimal response to
α∗B is always α

∗
A ≡ α∗B − ε if bαA < α∗B ≤ αM .

Given α∗A, consider the incentives of B. Using an identical argument, it is op-
timal for B to deviate from α∗B by undercutting α∗A by ε, if bαB < α∗A ≤ αM .
Hence, B’s optimal response to α∗A is αB = α∗A− ε < α∗B and not α

∗
B . Thus α

∗
B

is not an optimal response to α∗A, where α
∗
A is an optimal response to α

∗
B .

(b) If α∗B = bαA < αM , then the optimal response of A is to deviate to αM ,
since E (ΠA)|αA<bαA < EM (ΠA); but then it follows that intermediary B finds
it optimal to deviate to αB = αM − ε > α∗B . Hence, the optimal reply to α

∗
B

is α∗A ≡ αM , but the optimal reply of B to α∗A not α
∗
B .

Similar arguments apply for B’s optimal response to α∗A. It follows from the
above that there is no pure strategy Nash equilibrium in commission rates.

4.5 Randomising Commission Rates

This section characterises the unique, mixed strategy Nash equilibrium in in-
termediaries’ commission rates. Intuitively, randomisation of commission rates
prevents rival intermediaries from systematically undercutting each other.
Let H(αA) and F (αB) denote the cumulative distribution functions used to

randomise commission rates αA and αB, respectively, where F (·) and H (·) are
continuous and have the following features:

H(bαA) = F (bαB) = 0
H(αM ) = F

¡
αM

¢
= 1 (24)

dH/dαA > 0; dF/dαB > 0

Since the distributions are continuous, the probability of A and B setting
identical commission4 rates is 0. Let αA be a random draw from H (·). It follows
from F (·) that:

Pr(αB < αA) = F (αA)

Pr(αB > αA) = 1− F (αA) (25)

Pr(αA = αB) = 0

4This implies that while coordination failure with probability 1
4
is expected in stage 3 in

the event where traders receive two offers and commission rates are equal, the randomisation
of commission rates in stage 2 ensures that this event occurs with zero probability. Thus
coordination failure does not arise in equilibrium.
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Given the probabilities described in (25), we seek to find the optimal dis-
tribution H (·) for intermediary A, that keeps expected profits constant over
the distribution, and similarly, the optimal F (·) that keeps B’s expected profits
constant.
The mixed strategy Nash equilibrium depends on the relative values of bαA

and bαB, which reflect the relative values of PA and PB . There are three cases:
(i) bαA > bαB , where PA > PB (ii) bαA < bαB , where PA < PB and (iii) bαA = bαB,
where PA = PB .
In (i) and (ii) intermediaries A and B are shown to randomise5 over different

distributions, while in case (iii) the symmetry in network sizes implies H (·) =
F (·) ≡ G (·). Following the methodology used in Baye and De Vries (1992), but
allowing for asymmetric network sizes6, yields the unique, mixed strategy Nash
equilibrium summarised in proposition (4).

Proposition 4 (a) If PA = PB = P ∈ (0, 1), then there exists a mixed strategy
Nash equilibrium, in which intermediaries choose their commission rate ran-
domly from the same distribution:

G(α) =
α−

¡
1− P 2

¢
αM

αP 2
, where α ∈

£bα, αM¤ (26)

where bα = ¡1− P 2
¢
αM .

(b) If PA ∈ (0, 1), PB ∈ (0, 1) and PA 6= PB, then there is a unique, mixed
strategy Nash equilibrium, in which intermediaries A and B choose their com-
mission rate randomly from distributions H(αA) and F (αB), respectively, where:

H(αA) =
αA −

¡
1− P 2B

¢
αM

αAP 2B
, where αA ∈

£bαA, αM¤ (27)

F (αB) =
αB −

¡
1− P 2A

¢
αM

αBP 2A
, where αB ∈

£bαB , αM¤ (28)

where bαA = ¡1− P 2B
¢
αM and bαB = ¡1− P 2A

¢
αM .

Proof. The cases of symmetric and asymmetric network sizes are examined
in turn:
(a) The optimality of G (·) for both intermediaries when PA = PB = P , such
that H (·) = G (·) and F (·) = G (·) in equilibrium, can be shown by examining
expected operating profit of intermediaries in the ranges [0, bα], £bα,αM¤, and
greater than αM . From demand E(TA) and probabilities (25), it follows that:

5Note that the mixed strategy Nash equilibrium does not imply randomisation of commis-
sion rates across offers made to traders. Each intermediary sets a unique commission rate
that is common to all offers made, where this unique commission rate is a random draw from
the relevant distribution in proposition (4) in equilibrium.

6Since intermediaries’ network investment decisions in stage 1 are not necessarily symmet-
ric, we solve for the unique, mixed strategy Nash equilibrium for general PA and PB without
imposing a restriction of symmetry.
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E (ΠA) =

⎧⎨⎩ αASP
2 if αA < bα ≤ αM

F (αA)
¡
αASP

2(1− P 2)
¢
+ (1− F (αA))

¡
αASP

2
¢

if αA ∈
£bα,αM¤

0 if αA > αM

Since it is never optimal for A to set αA below bα, the probability that αA < bα is
zero. Hence, randomisation over range αA ∈

£bα, αM¤ need only be considered.
E (ΠA)|αA∈[bα,αM ] can be simplified to αASP 2 £1− P 2F (αA)

¤
. Hence, A chooses

H (·) to maximise E (ΠA) over
£bα, αM¤:

max
dH

E (ΠA) =

Z αM

bα
£
αASP

2
¡
1− P 2F (αA)

¢¤
dH (29)

Recalling that H(bα) = F (bα) = 0 and H(αM ) = F
¡
αM

¢
= 1, the solution to

(29) yields constant expected profit for A over
£bα, αM¤ equal to EM (ΠA). The

analysis is symmetric for B so:

max
dH

E (ΠA) = max
dF

E (ΠB) = αMSP 2
¡
1− P 2

¢
(30)

A’s expected payoff under any random draw αA ∈
£bα, αM¤ must be equal to

(30). Similarly for random draw αB ∈
£bα, αM¤ by B. Solving from (29) and

(30) yields optimal distributions H (·) = G (·) and F (·) = G (·), where distribu-
tion G (·) is described by equation (26).
(b) The optimality of H (·) and F (·) in (27) and (28), respectively, follows sim-
ilarly for the case where PA 6= PB. Let PA < PB and hence bαA < bαB. From
demand E(TA) and probabilities (25), it follows that:

E (ΠA) =

⎧⎪⎪⎨⎪⎪⎩
αASP

2
A if αA < bαA

αASP
2
A if αA ∈ [bαA, bαB]

F (αA)
¡
αASP

2
A(1− P 2B)

¢
+ (1− F (αA))

¡
αASP

2
A

¢
if αA ∈

£bαB, αM¤
0 if αA > αM

The probability that αA < bαA is zero, but there now exists a range of commis-
sion rates [bαA, bαB], where A finds it optimal to follow an undercutting strategy
but B finds the monopolistic strategy optimal. This gives rise to a positive
probability that αA < bαB ≤ αM . Hence A chooses H (·) to maximise the
following:

max
dH

E (ΠA) =

Z αM

bαB
£
αASP

2
A

¡
1− P 2BF (αA)

¢¤
dH +

Z bαB
bαA

¡
αASP

2
A

¢
dH (31)

Solving (31) yields constant expected profit for A:

max
dH

E (ΠA) = EM (ΠA) = αMSP 2A
¡
1− P 2B

¢
(32)

B chooses F (·) to maximise:

max
dF

E (ΠB) =

Z αM

bαB
£
αBSP

2
B

¡
1− P 2AH(αB)

¢¤
dF (33)
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Solving (33) yields constant expected profit for B:

max
dF

E (ΠB) = EM (ΠB) = αMSP 2B
¡
1− P 2A

¢
(34)

From (31), (32), (33) and (34) it follows that the optimal strategy of A and
B is to randomise commission rates according to distributions (27) and (28),
respectively.
Intuitively, randomisation of commission rates prevents intermediaries from

systematically undercutting each other, thereby allowing the expected operating
profits EM (ΠA) and EM (ΠB) to be attained in equilibrium. That is, randomi-
sation allows each intermediary to attain expected operating profit equal to
that which would arise from the monopolistic segment of their network under
the monopoly commission rate.
This is summarised by Corollary (5).

Corollary 5 In the unique, mixed strategy Nash equilibrium in commission
rates:
(a) If PA = PB = P , then each intermediary expects to receive constant operat-
ing profit equal to αMSP 2

¡
1− P 2

¢
.

(b) If PA 6= PB, then intermediaries A and B expect to receive constant operating
profit equal to EM (ΠA) = αMSP 2A

¡
1− P 2B

¢
and EM (ΠB) = αMSP 2B

¡
1− P 2A

¢
,

respectively.

Proof. This follows directly from the proof of proposition (4).
An implication of randomised commission rates is that traders’ payoffs from

indirect trade through A and B, respectively, are random variables that mirror
H(αA) and F (αB) when PA 6= PB and G(α), when PA = PB . The conflicting
monopolistic and competitive forces for commission-setting in the fragmented
duopoly give rise to a unique, non-cooperative mixed strategy Nash equilibrium
where intermediaries randomise their commission rates. The range of commis-
sion rates over which randomisation takes place has an upper bound of αM ,
imposed by Ra, and a positive lower bound due to intermediaries’ monopolistic
outside option. While the upper bound for both commission rates is exogenously
determined by traders’ direct trade option, that in turn hinges on the level of
information costs in the market, the lower bounds hinge on network sizes. In
particular, an intermediary with a larger network, enjoys a relatively larger set
of exclusive trade matches, and thus behaves more monopolistically when ran-
domising commission rates than does an intermediary with a smaller network.
Each intermediary’s expected operating profit is constant and corresponds to
expected monopoly profit from the monopolistic market segment. Intermedi-
aries invest in network development in stage 1, anticipating the implications of
their decisions. It is the Nash equilibrium in network sizes to which we now
turn.
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5 Stage 1 - Nash Equilibrium in Network Sizes
In this section we seek a Nash equilibrium, or Nash equilibria, in network sizes,
where these are set simultaneously and non-cooperatively by competing inter-
mediaries, each taking the network size of his rival, and the offer acceptance
strategy of traders, as given.

5.1 Network Investment Cost

Intermediaries are assumed to have access to the same technology for developing
a network of contacts, where the total investment cost for a network of size PI
is denoted by C (PI). The network investment decisions of intermediaries are
analysed under two cost specifications:

(a) Linear cost: C (PI) = 2PIc, where c > 0. Hence:

∂CI

∂PI
= 2c > 0 (35)

The marginal cost of network expansion is constant.

(b) Convex cost: C (PI) = 2PIc(i, PI), where c(i, PI) = γiαP 2I and α ≥ 1,
γ > 0. Hence:

C (PI) = 2γi
αP 3I (36)

∂CI

∂PI
= 6γiαP 2I > 0,

∂2CI

∂P 2I
= 12γiαPI > 0 (37)

∂CI

∂i
= 2αγiα−1P 3I > 0 (38)

The marginal cost of network expansion is thus increasing monotonically in
the level of information costs and network size, while convexity in network size
is assumed. Cost parameter γ is a scale factor. In addition, let the probability
of direct matching q(i) take the functional form q(i) = 1− iδ , where δ > α ≥ 1.

5.2 Stage 1 Expected Profit

In stage 1, intermediary A chooses PA to maximise stage 1 expected profit,
denoted by E1(ΠA), taking PB and {Ra, Rs} as given. Similarly, intermediary
B chooses PB to maximise E1(ΠB), taking PA and {Ra, Rs} as given. Inter-
mediaries anticipate expected operating profit levels EM (ΠA) and EM (ΠB),
respectively, to arise from the stage 2 commission-setting subgame. Hence,
E1(ΠA) and E1(ΠB) are given by:

E1(ΠA) = EM (ΠA)− C (PA) (39)

= αMSP 2A
¡
1− P 2B

¢
− C (PA)
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and:

E1(ΠB) = EM (ΠB)− C (PB) (40)

= αMSP 2B
¡
1− P 2A

¢
− C (PB)

where αM = 1− q (i).
Equations (39) and (40) offer a general description of expected stage 1 profit,

where the three polar market structures correspond to different configurations
of PA and PB:

1. Monopoly: if PB = 0 and PA ∈ [0, 1] then (39) and (40) yield E1(ΠA) =
αMSP 2A − C (PA) and E1(ΠB) = 0. Thus B is inactive and A is a mo-
nopolist and vice versa if PA = 0 and PB ∈ [0, 1].

2. Bertrand duopoly: if PA = PB = 1 then (39) and (40) yield E1(ΠA) =
E1(ΠB) = −C (1) < 0. Hence, PA = PB = 1 can never constitute a Nash
equilibrium in network sizes.

3. Fragmented duopoly in intermediation services, where PA ∈ (0, 1) and
PB ∈ (0, 1). Equations (39) and (40) allow for both symmetric and asym-
metric network size selection.

It follows that Bertrand duopoly can never arise in a subgame perfect equi-
librium (SPE) of the game, since it does not constitute a Nash equilibrium in
stage 1. Only monopoly and fragmented duopoly are thus consistent with SPE.

5.3 Linear Network-Building Costs

Substituting C (PI) = 2PIc into (39) and (40) yields:

E1(ΠA) = αMSP 2A
¡
1− P 2B

¢
− 2cPA (41)

E1(ΠB) = αMSP 2B
¡
1− P 2A

¢
− 2cPB (42)

Equations (41) and (42) show that the expected profit of an intermediary is
decreasing in the network size of the rival intermediary and increasing in his own
network size. Intuitively, the larger the network size of the rival, the greater the
measure of common matches as a result of network overlap; and hence the lower
the expected operating profit arising from the mixed strategy Nash equilibrium
in commission rates.
Examination of (41) and (42) shows there is no pair of network sizes (P ∗A, P

∗
B)

that are best responses to each other and simultaneously satisfy P ∗A ∈ (0, 1] and
P ∗B ∈ (0, 1] when network-building costs are linear.
The results are summarised by propositions (6) and (7).

Proposition 6 If network-building cost is linear, then there is no pure strategy
Nash equilibrium in which both intermediaries are active.

21



Proof. Let PB (PA) and PA (PB) describe the locus of network size pairs
along which E1(ΠA) = 0 and E1(ΠB) = 0, respectively. Hence, for a given net-
work size PA, PB (PA) gives the threshold level of PB above which E1(ΠA)|PA <

0. Similarly, for given network size PB , PA (PB) gives the threshold level of PA
above which E1(ΠB)|PB < 0. Rearranging E1(ΠA) = 0 and E1(ΠB) = 0 from
equations (41) and (42) yields:

PB (PA) =

µ
1− 2c

SPAαM

¶ 1
2

(43)

PA (PB) =

µ
1− 2c

SPBαM

¶ 1
2

(44)

Proof by contradiction. Let (P ∗A, P
∗
B) reflect a pure strategy Nash equilibrium

in network sizes where P ∗A ∈ (0, 1) and P ∗B ∈ (0, 1).
Consider the incentives of intermediary A. If PB (P

∗
A) < P ∗B , then it follows

that E1(ΠA)|P∗A < 0; but if A is making losses, P ∗A cannot be an optimal reply
to P ∗B. Recall that E

1(ΠA) is increasing in PA. It follows that the maximum
expected profit thatA can attain, given P ∗B, is that which corresponds to PA = 1.
If E1(ΠA)|P∗B ,PA=1 > 0, then A’s optimal reply to P ∗B is PA (P

∗
B) = 1. If

E1(ΠA)|P∗B,PA=1 < 0, then A’s optimal reply is PA (P ∗B) = 0.
Suppose PA (P ∗B) = 1. Then B is making losses under P ∗B > 0. Thus B’s

optimal reply to PA (P ∗B) = 1 is P
∗
B (1) = 0.

Suppose instead that PA (P ∗B) = 0. Then P ∗B ∈ (0, 1) is not an optimal reply to
PA (P

∗
B) = 0 since B can raise E1(ΠB) by increasing P ∗B to 1. Thus B’s optimal

reply to PA (P ∗B) = 0 is P
∗
B (0) = 1.

If instead P ∗B < PB (P
∗
A), then it follows that E

1(ΠA)|P∗A > 0; but then
interior network size P ∗A ∈ (0, 1) is not an optimal reply to P ∗B. A’s optimal
reply is thus PA (P ∗B) = 1 and arguments apply as above.
We can thus conclude that neither is P ∗A ∈ (0, 1) an optimal reply to P ∗B ∈

(0, 1), nor is P ∗B ∈ (0, 1) an optimal reply to P ∗A ∈ (0, 1). Moreover, since
P ∗B (1) = P ∗A (1) = 0, (P ∗A, P

∗
B) = (1, 1) cannot be a Nash equilibrium either.

Thus (P ∗A, P
∗
B) cannot constitute a Nash equilibrium where both network sizes

are non-zero. It follows that there is no Nash equilibrium in which both inter-
mediaries are active.

Proposition 7 If network-building cost is linear and provided c < 1
2Sα

M ,
then there are two pure strategy Nash equilibria where (P ∗A, P

∗
B) = (1, 0) and

(P ∗A, P
∗
B) = (0, 1).

Proof. It follows from proposition (6) that (P ∗A, P
∗
B) cannot constitute a

Nash equilibrium where both network sizes are non-zero. The only remaining
candidate Nash equilibria are (P ∗A, P

∗
B) = (1, 0) and (P

∗
A, P

∗
B) = (0, 1). If P

∗
A =

1, then there is no scope for B to gain exclusive trade matches from investment in
PB. All resulting trade matches are common and thus no profit can be attained.
The optimal reply of B is thus P ∗B (1) = 0. A symmetric argument applies where
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P ∗B = 1. Hence, (P
∗
A, P

∗
B) = (1, 0) and (P

∗
A, P

∗
B) = (0, 1) constitute the two pure

strategy Nash equilibria in network sizes. Moreover, it follows directly from
equations (41) and (42) that c < 1

2Sα
M must be satisfied for expected profit to

be positive in equilibrium for the monopolist intermediary.
The analysis has shown that under linear costs of network expansion the

equilibrium outcome of the game is monopolisation of the market by either
A or B. The non-convexity in network-building costs provides incentives for
intermediaries to increase network size without bound, other than the constraint
imposed by market size. Each intermediary provides complete coverage of the
market, when active, thereby preventing the rival intermediary from gaining any
exclusive trade matches.
Substituting PA = 1 and PB = 1 into (43) and (44), respectively, yields:

P = PB (1) = PA (1) =

µ
1− 2c

SαM

¶ 1
2

(45)

P denotes the threshold level of PA below which it is optimal for B to invest
in a network size that covers the whole market and above which B is inactive.
By symmetry, P is also the threshold for PB. Figure (2) illustrates the reac-
tion functions7 of A and B. The E1(ΠA) = 0 and E1(ΠB) = 0 loci pin down
threshold level P for the two intermediaries and confirm the monopolisation of
the market by either A or B (at NE2 and NE1, respectively) is the only mar-
ket outcome consistent with profit maximisation under linear costs of network
expansion.

5.4 Convex Network-Building Costs

This section shows how convexity in the costs of developing a network pro-
vides sufficient incentives for ‘restraint’ in network investment, so as to allow
both intermediaries to survive in a fragmented duopoly with incomplete network
overlap.
Note that in the analysis that follows we assume γ is sufficiently low relative

to S so that E1(ΠA) and E1(ΠB) are positive in equilibrium. The results are
summarised by proposition (8).

Proposition 8 If network-building cost is convex, then there exists a unique,
pure strategy Nash equilibrium in network sizes where:

P ∗A = P ∗B =
3γ

2Siδ−α

⎡⎣Ã4µSiδ−α
3γ

¶2
+ 1

! 1
2

− 1

⎤⎦ ∈ (0, 1)
Proof. Substituting C (PI) = 2PIc(i, PI) = 2γiαP 3I and q(i) = 1 − iδ into

(39) and (40), where δ > α ≥ 1 and γ > 0, yields:

E1(ΠA) = iδSP 2A
¡
1− P 2B

¢
− 2γiαP 3A (46)

E1(ΠB) = iδSP 2B
¡
1− P 2A

¢
− 2γiαP 3B (47)

7The figure is drawn for parameter values S = 10, c = 1 and αM = 0.7.
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Figure 2: Monopoly Nash equilibria in network sizes.

24



The network size reaction functions of A and B, denoted by PA (PB) and
PB (PA), respectively, are derived from the first order conditions:

∂E1(ΠA)

∂PA |PB
= 2iδSPA

¡
1− P 2B

¢
− 6γiαP 2A = 0 (48)

∂E1(ΠB)

∂PB |PA
= 2iδSPB

¡
1− P 2A

¢
− 6γiαP 2B = 0 (49)

The first order conditions (48) and (49) simplify to give:

PA (PB) =
Siδ−α

3γ

¡
1− P 2B

¢
(50)

PB (PA) =
Siδ−α

3γ

¡
1− P 2A

¢
(51)

Solving the reaction functions simultaneously, and confirming that we have a
maximum8, yields Nash equilibrium network sizes (P ∗A, P

∗
B) in terms of infor-

mation costs i, and parameters γ, S, δ and α:

P ∗ = P ∗A = P ∗B =
3γ

2Siδ−α

⎡⎣Ã4µSiδ−α
3γ

¶2
+ 1

! 1
2

− 1

⎤⎦ (52)

Discarding complex and negative solutions to (48) and (49) confirms that (52)
describes the unique Nash equilibrium in network sizes.
It follows directly from the reaction functions, (50) and (51), that network

sizes are strategic substitutes. An increase in the network size of A gives rise to a
strategic contraction in the network investment of B, and vice versa. Intuitively,
when intermediary A invests in a larger network, the expected overlap between
the two networks is larger, thereby lowering EM (ΠB). Hence, for given invest-
ment cost C(PB), B can expect a lower revenue than before, thereby inducing
a network contraction.
Moreover, network sizes are increasing in trade surplus S, declining in cost

parameter γ, and increasing in information cost i (since δ > α ≥ 1).
Figure (3) illustrates9 PA (PB) and PB (PA) and depicts a unique, pure strat-

egy Nash equilibrium in network sizes, in which both intermediaries invest sym-
metrically in network development. This arises from the symmetry in the costs
incurred by A and B. It is straightforward to show that when cost parameter
γ varies across intermediaries, the intermediary with the lower cost has a larger
network size in equilibrium.
Nash equilibrium network sizes (P ∗A, P

∗
B) in terms of information costs i, and

parameters γ, S, δ and α are:

P ∗ = P ∗A = P ∗B =
3γ

2Siδ−α

⎡⎣Ã4µSiδ−α
3γ

¶2
+ 1

! 1
2

− 1

⎤⎦ (53)

8The second derivatives and confirmation that P∗A and P∗B correspond to a maximum can
be found in Appendix B.

9The figure is drawn for parameter values γ = 1, δ = 4, α = 2, S = 4 and i = 0.8.
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Figure 3: Fragmented duopoly Nash equilibrium in network sizes.
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Let PM denote the monopoly network size that prevails under the same cost
specification, where:

PM =
Siδ−α

3γ
> P ∗ (54)

Equations (53) and (54) describe the equilibrium monopoly and duopoly
network sizes for network cost specification (36). Figure (4) illustrates the path
of network size with information costs in the two cases for parameter values
γ = 1, δ = 4, α = 2, S = 4.

10.750.50.250

1

0.75

0.5

0.25

0

PA=PB

P

i

PM

Figure 4: Network size and information cost.

To summarise, the analysis shows that either a monopoly or a fragmented
duopoly can prevail in equilibrium, depending on the network-building tech-
nology. Under convexity assumptions, both intermediaries invest in a network
and compete over common matches, while randomising commission rates. In
contrast, linear network development costs can only give rise to a monopoly
outcome.

6 Conclusion
This paper presents a new theoretical framework to analyse the strategic in-
teraction between two information intermediaries who compete in commission
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rates and network size. The intermediaries are assumed to have symmetric ac-
cess to an information technology that allows them to develop contacts with
importers and exporters who match uniquely in pairs. Intermediaries have the
opportunity to invest in a network of contacts and subsequently compete in
commission rates before making offers of intermediation to members in their
network. Traders select between intermediaries ex post, when uncertainty in the
realisation of a match is resolved.
The analysis delivers the following results. First, the model suggests that

network competition between information intermediaries has a distinctive mar-
ket structure, where intermediaries are monopolist service providers to some con-
tacts but duopolists over contacts they share in their network overlap. Traders
in the network overlap receive two intermediation offers, while other members
are exclusive to one intermediary and thus receive only one offer of intermedia-
tion. Traders in receipt of two intermediation offers play a coordination game
when deciding which offer to select. The information frictions in the model
make it impossible for traders to signal their decisions to each other, so there
are multiple equilibria to the game. The model thus emphasises the role of ‘be-
liefs’ in determining market outcomes when there are information frictions and
traders gain from making coordinated decisions.
Second, the coordination game of traders presents the possibility of coordi-

nation failure between trade pairs, even though both traders are members of
both networks and this is known to both.
Third, we show that if traders choose to accept the offer from the inter-

mediary with the lower commission and randomise when commissions are the
same, then intermediaries have an incentive to undercut each other. Moreover,
intermediaries’ inability to price discriminate between the competitive and non-
competitive market segments, gives rise to an undercutting game, which has
no pure strategy Nash equilibrium due to the option to charge the monopoly
commission to exclusive contacts, and relinquish the overlap to the rival. Ran-
domising over the strategy space of commission rates results in a mixed strategy
Nash equilibrium yielding expected profit equal to that which would have been
earned in the monopolistic outside option. In this mixed strategy Nash equi-
librium, an intermediary with a larger network sets a higher commission rate,
on average, than an intermediary with a smaller network. Moreover, average
commission rates lie below the monopoly commission rate. Hence traders who
match indirectly enjoy a trade surplus over and above their outside option.
The multiplicity of equilibria of the coordination game and the randomisa-

tion of commission rates that results shows how information problems can give
rise to endogenous uncertainty in market outcomes.
Finally, competition is affected by the technology of network development.

The analysis shows that either a monopoly or a fragmented duopoly can prevail
in equilibrium, depending on the network-building technology. Under convexity
assumptions, both intermediaries invest in a network and compete over com-
mon matches, while randomising commission rates. In contrast, linear network
development costs can only give rise to a monopoly outcome.
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Appendix A. The Coordination Game
Recall the payoff matrix summarising the payoff structure of traders’ simulta-
neous and non-cooperative coordination game in stage 3:

Mj

A B

Xj

A S
2 (1− αA) ,

S
2 (1− αA)

S
2

¡
1− αM

¢
, S
2

¡
1− αM

¢
B S

2

¡
1− αM

¢
, S
2

¡
1− αM

¢
S
2 (1− αB) ,

S
2 (1− αB)

There are two pure strategy Nash Equilibria, (A,A) and (B,B), and one
symmetric, mixed strategy Nash equilibrium. Suppose Xj selects A with prob-
ability λ (and B with 1− λ) and Mj selects A with probability µ (and B with
1 − µ). For probabilities (λ∗, µ∗) to form a mixed strategy Nash equilibrium
the expected payoffs from mixing between A and B must be equalised for each
trader.
Equalising the expected payoff from the mixed strategy of Xj yields:

λ (1− αA) + (1− λ)
¡
1− αM

¢
= (1− λ) (1− αB) + λ

¡
1− αM

¢
(55)
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Rearranging (55) yields:

λ∗ =
αM − αB

2αM − αB − αA
(56)

Equalising the expected payoff from the mixed strategy of Mj yields:

µ (1− αA) + (1− µ)
¡
1− αM

¢
= (1− µ) (1− αB) + µ

¡
1− αM

¢
(57)

Rearranging (57) yields:

µ∗ =
αM − αB

2αM − αB − αA
(58)

Since λ∗ = µ∗, the unique mixed strategy Nash equilibrium is symmetric.
The expected payoffs of Xj and Mj in the mixed strategy Nash equilibrium

are found by substituting λ∗ and µ∗ into each side of (55) and (57) yields:

E(Πj)|λ∗,µ∗ =
S

2

∙
αM − αB

2αM − αB − αA
(1− αA) +

αM − αA
2αM − αB − αA

¡
1− αM

¢¸
=

S

2

∙
αM − αA

2αM − αB − αA
(1− αB) +

αM − αB
2αM − αB − αA

¡
1− αM

¢¸

Appendix B. Second Derivatives
The second derivatives that follow from (48) and (49) are:

∂2E1(ΠA)

∂P 2A |PB
= 2iδS

¡
1− P 2B

¢
− 12γiαPA (59)

∂2E1(ΠB)

∂P 2B |PA
= 2iδS

¡
1− P 2A

¢
− 12γiαPB (60)

To have a maximum, (59) and (60) must be negative. Hence, the following
must hold in equilibrium:

PA >
Siδ−α

6γ

¡
1− P 2B

¢
(61)

PB >
Siδ−α

6γ

¡
1− P 2A

¢
(62)

Comparing (61) and (62) with (50) and (51) confirms the constraints are
satisfied in equilibrium and thus that P ∗A and P ∗B correspond to a maximum.
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