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Abstract 
The commercial value of basic knowledge depends on the arrival of follow-up developments 
mostly from outside the boundaries of the inventing firm. Private returns would depend on 
the extent the inventing firm internalizes these follow-up developments. Such internalization 
is less likely to occur as knowledge becomes more general. This motivates the historical 
concern of insufficient private incentive for basic research. The present paper develops a 
novel empirical methodology of identifying unique patterns of knowledge flows (based on 
patent citations), which provide information about whether ‘spilled’ knowledge is reabsorbed 
by its inventor. Using comprehensive data on the largest 500 inventing firms in the US the 
classical problem of underinvestment in basic research is confirmed: spillovers of more 
general knowledge (and in this respect, more basic) are less likely to feed back to the 
inventing firm. This translates to lower private returns, as indicated by the effect of the R&D 
stock of the firm on its market value. 
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1. Introduction

It is well accepted that significant advancements in scientific knowledge must come from

basic research. Basic knowledge brings about follow-up developments that usually spread

over a wide range of fields and are conducted outside the boundaries of the inventing

firm. These follow-up developments substantiality enhance the commercial value of the

basic knowledge1. In a context of sequential innovation, the literature refers to the outside

follow-up developments of knowledge as knowledge spillovers (hereafter, spillovers).

For the inventing firm to capture substantial private rents it must internalize the

spillovers of its basic knowledge, i.e., the inventing firm must benefit from the value en-

hancing features added to its basic knowledge by other agents. This internalization can

take two forms: contractually and technologically. Under contractual internalization the

inventing firm license its knowledge to using firms, where under technological internaliza-

tion the spillovers created by the basic knowledge feed back into the future research of

the inventing firm. The present paper focuses on technological internalization as a chan-

nel through which private rents are appropriated. An empirical methodology (based on

patent citations) is developed to measure technological internalization and the extent it is

correlated with the generality of knowledge and the market value of the inventing firm.

The main hypothesis of this paper is that as knowledge becomes more general, and in

this respect more basic, the extent spillovers feed back to the inventing firm diminishes,

since only firms with a wider technology base could achieve such internalization. The em-

pirical prediction of this hypothesis is that there would be a negative correlation between

the generality of knowledge (measured as the number of fields where follow-up research is

inspired) and the extent this knowledge is reabsorbed by the inventing firm after external

follow-up developments arrive. Yet, a competing hypothesis is that firms choose the “ba-

sicness” level of their knowledge: basic knowledge is invented only by firms with a wide

technology base that allows internalizing private rents even when they are spread over

1An extreme form of basic knowledge is a General Purpose Technology (GPT). Helpman and Trajten-
berg (1997) show that the economic value of GPT arrives only after follow-up developments take place
(see also Bresnahan and Trajtenberg (1995) and Rosenberg and Trajtenberg (2004)).
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many fields. The empirical prediction of this competing hypothesis is that the negative

correlation between the generality of knowledge and internalization of spillovers will be

mitigated if not completely muted (since firms that conduct basic research are those that

are better able to technologically internalize it)2.

Distinguishing between these two hypotheses is extremely important for analyzing

the classical problem of underinvestment in basic research. Prior studies have adopted

a production function approach to measure the returns to basic research and whether

it is endogenously determined (Griliches (1986), Mansfield (1980)). The main finding

coming from this literature is that there is a very large premium at the firm level on basic

research. This is inconsistent with the hypothesis that firms choose between basic and

applied research, since if this were the case we would expect private returns from both

types of research to be equalized3. The present paper develops a complementary dynamic

approach for studying the endogeniety of basic knowledge and the extent it is privately

rewarded. The main advantage of this new approach is that it enables capturing the

dynamic payoff associated with knowledge when innovation is sequential. The dynamic

payoff of internalizing the follow-up developments of knowledge would be higher for basic

knowledge. Yet, for basic knowledge such internalization is also less likely to occur.

Spillovers introduce two countervailing forces with respect to the incentive to innovate:

on the one hand, spillovers encourage future research, but on the other hand, they dis-

courage current research due to obsolescence of private rents (Schumpeter (1942), Aghion

and Howitt (1992) and Segerstrom, Anant, and Dinopoulos (1990)). Most of our under-

standing of the incentive to innovate (of both early inventors and their followers) lies on

how these two forces are reconciled. The conflict between these two forces is believed to

be much stronger for basic knowledge (Nelson (1959), Arrow (1962)).

2There may still be a negative correlation between generality and technological internalization even if
generality if endogenously chosen by firms due to the stochastic nature of research.

3In case there is a premium risk for basic research, private returns to basic research could be higher
than to applied research, even when the type of research is endogenously determined. Yet, the estimated
basic research premium is too high to represent such risk: Griliches (1986) reports that the private return
to basic research is eight times the private returns to applied research.
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The major contribution of this paper is in developing a novel empirical methodol-

ogy, based on patents and citations, for testing whether appropriability is lower for basic

knowledge in a dynamic framework of sequential innovation. Spillovers are measured as

the sequential developments of knowledge coming from outside the inventing firm. Based

on a complete characterization of the flow of knowledge underlying these spillovers, it

can be determined whether they feed back into the inventing firm. This feeding back of

spillovers is defined as technological internalization. Essentially, two types of spillovers are

distinguished: Internalized and Externalized. Internalized spillovers are spillovers that feed

back into the dynamic research of the inventing firm, whereas Externalized spillovers do

not. Technological internalization is defined as the share of Internalized spillovers created

by the invention. To the extent technological internalization is a channel through which

private rents are appropriated by (early) inventors, the present paper adds a great deal

to our understanding of the incentive to invent basic knowledge in a dynamic framework

where private rents depend on external follow-up research.

In addition to technological internalization, the inventing firm can internalize private

rents through a contractual channel. The literature has studied the theoretical aspects of

contractual internalization in a framework of sequential innovation, mainly as a mechanism

through which rents are shared between early innovators and their followers. Green and

Scotchmer (1995), Scotchmer (1996) and Chang (1995) study the theoretical aspects of the

effect of a second-generation invention on the rents captured on the first-generation inven-

tion. O’Donoghue (1998) study the inventive step requirement in patent protection and

show how the inventive step can be chosen to minimize the trade-off between encouraging

current research and discouraging future research.

Yet, a large body of research shows that contractual internalization can fail to provide

sufficient private rents when transaction costs of contracting are high4 . In this case,

private rents could still be captured through the technological channel of internalization.

However, the theoretical and empirical literature has not yet investigated technological

4E.g., Eisenberg (1998), Grindley and Teece (1997), Hall and Ziedonis (2001), Lanjouw and Schanker-
man (2004) and Schankerman and Noel (2006).
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internalization. Focusing on the technological channel of internalization is especially im-

portant in light of the role of basic knowledge in creating “pure” spillovers. According to

the endogenous growth literature, “pure” spillovers, which occur when knowledge trans-

fers freely across inventors and inspires follow-up research in numerous fields, allow the

economy to depart from decreasing returns in the production of knowledge and achieve

sustained economic growth (Romer (1986), Grossman and Helpman (1991)). Contrac-

tual internalization hinders the free access to knowledge (since the receivers of knowledge

have to incur usage costs). Hence, contractual internalization should diminish economic

growth, through restricting the increasing returns in knowledge production. Yet, under

technological internalization, “pure” spillovers should not diminish in any obvious way,

since private rents can be captured without limiting future research.

Finding a negative correlation between technological internalization and the “basic-

ness” of knowledge would imply one of two things: either the incentive to invent basic

knowledge is reduced (i.e., current research diminishes), or that the inventing firms must

adopt the contractual channel to secure private rents (future research diminishes due to

reduction in “pure” spillovers, whereas current research may diminish as well in case con-

tractual internalization does not sufficiently reward the inventing firm). In both cases,

lower technological internalization would reduce the pace of innovation and growth.

Henderson, Jaffe and Trajtenberg (1997)5 show that patents and citations data can

be used to measure the generality of knowledge: knowledge embodied in a patent is more

general if the citations the patent receives spread over more technology fields. The present

paper adopts generality as the main characteristic of basic knowledge and tests its corre-

lation with technological internalization.

The essence of my empirical methodology for measuring technological internalization

is as follows: knowledge is identified as a patent and knowledge flow is identified as a

patent citation6. For each patent in the sample a “family-tree” is constructed, based on

5See also Hall and Trajtenberg (2005).
6Prior studies that empirically identified citations as knowledge flows are Jaffe, Henderson and Tra-

jtenberg (1993), Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1999).
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the citations the patent receives. Figure 1 illustrates this methodology for a simple case

of a sequence of three patents. Assume patent j cites patent i and patent k cites patent j.

Hence, the “family-tree” of patent i includes both patent j and patent k, where, patent j

is the ‘child’ of patent i and patent k is the ‘grandchild’ of patent i. Given this “family-

tree”, invention k is classified as an offspring of invention i, even though knowledge did

not transfer directly from invention i to invention k. Applying this method to a high-order

sequence of citations allows tracing the trajectory knowledge has followed, while spreading

across inventions and firms. Based on these trajectories, it can be determined whether

knowledge that leaves the inventing firm and is further advanced by other firms will have

been reabsorbed by the inventing firm in a future period. (e.g., if patents i and k are held

by the same firm whereas patent j is owned by another firm, the spillovers created by

invention i are technologically internalized by the inventing firm).
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Figure 1: The “family-tree” of invention i

Based on the above methodology of identifying the diffusion pattern of knowledge,

technological internalization is measured. An econometric specification of the effect of

generality on technological internalization is estimated for all patents held by the largest

500 inventing firms in the US. There is strong evidence of a negative effect of generality

on technological internalization. This finding supports the hypothesis that basic research

is not endogenously chosen by firms and is less likely to be privately rewarded under the
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dynamic consideration of technological internalization.

Finally, a market value equation is estimated to confirm that technological internaliza-

tion is an important channel through which private rents are appropriated. The estimates

from the value function are then used to quantify the impact of generality on private re-

turns. A one standard deviation increase in technological internalization raises the market

valuation of an additional one dollar spent on R&D by 50 percent, evaluated at the mean.

Based on this estimate, a one standard deviation increase in the generality of knowledge

lowers private returns by 4.8 percent. Moving from the most specialized to the most gen-

eral knowledge (the two extreme points on the generality spectrum) lowers private returns

by 15.3 percent, evaluated at the mean.

In summary, a novel empirical methodology is developed to measure internalization of

private rents via a technological channel through which an inventor reabsorbs its knowl-

edge that is “spilled” to other agents. This measure of appropriability is used to test

the historical concern that basic knowledge is less privately rewarded. The econometric

findings support this concern.

The rest of this paper proceeds as following: section 2 presents the methodology for

measuring technological internalization, section 3 shows how generality is measured, sec-

tion 4 describes the data, section 5 reports the findings and section 6 concludes.

2. Measuring technological internalization

This section describes the conceptual and empirical issues regarding measuring technolog-

ical internalization. I start by showing how the technological contribution of an invention

is identified. Then, spillovers are defined as the external exploitation of the technological

contribution of the invention. Finally, it is shown how it is determined whether spillovers

feed back into the inventing firm to generate technological internalization.
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2.1. Technological contribution

Technological contribution is measured in two dimensions: the number of lines of research

the invention originates and the ‘quality’ of these lines of research. A line of research

is defined as a sequence of inventions, where every invention is a follow-up development

of its immediate ancestor. This sequence of inventions is required to be unique over a

given time period, i.e., not to be fully contained in a longer sequence of inventions. Define

the first invention in the line of research as an originating invention. A line of research

is assumed to be of a higher ‘quality’, if the number of subsequent developments of the

originating invention along the line of research is higher.

More formally, the technological contribution of invention i, TCi, is computed as the

‘quality’-weighted count of the lines of research invention i originates, as following7:

TCi =
X
k∈Ki

LRk ×Qk (2.1)

Where, Ki is the set of lines of research originated in invention i, k indexes lines of

research in this set, LRk is a dummy that receives the value 1 for line of research k and

zero otherwise, and Qk is the ‘quality’ of line of research k, as measured by the number of

inventions the line of research includes8.

Applying this formulation to the diffusion patterns in figure 2 yields:

TC1
A = (1× 3) = 3 (2.2)

7Belenzon (2005) shows that this method of measuring technological contribution is equivalent to an
alternative approach of counting the number of offspring inventions and weighing each one by the number
of direct citations received.

8Simply counting the number of inventions along a line of research may be an overestimate of the
technological contribution of the originating invention. A subsequent invention which is a high generation
of development of the originating invention is more likely to have benefited from other prior subsequent
inventions along the line of research. Thus, I always discount every generation by a discount factor of

δ per generation (which is assumed to be 15 percent), thus, Qk =
JX
j=1

δj−1, where, J is the number of

offspring inventions in line of research k. Since the choice of the discount factor is arbitrary, other values
of δ are experimented with as robustness tests.
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Where, TC1
A is the technological contribution of invention A under pattern 1. The

term 1 in the brackets represents the singleton line of research A → B → C → D that

is adjusted by its ‘quality’, which is 3 (since it includes three subsequent developments of

invention A: B, C and D).

Similarly, the technological contribution of invention A under diffusion pattern 2, TC2
A,

is:

TC2
A = (1× 2) + (1× 2) = 4 (2.3)

The term 1 in the first brackets represents the line of research A → B → C that

is adjusted by its ‘quality’, which is 2 (since it includes two subsequent developments of

invention A: B and C). The term 1 in the second brackets represents the line of research

A → B → D that is adjusted by its ‘quality’, which is 2 as well (since it includes two

subsequent developments of invention A: B and D).

From this is concluded that the technological contribution of invention A under dif-

fusion pattern 2 is greater than its technological contribution under diffusion pattern 1

(intuitively, under both patterns of diffusion the number of subsequent developments is

equal. However, there are more research opportunities under pattern 2, as indicated by

the number of lines of research).
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Figure 2: Technological contribution

Figure 2: Circles in this figure represent inventions and arrows represent the direction

of knowledge flow. Pattern 1 illustrates a singleton path of knowledge flow, which is A→
B → C → D, while diffusion pattern 2 illustrates two unique paths of knowledge flows,

which are A → B → C and A → B → D. Determining the technological contribution of

invention A under the two diffusion patterns requires weighing these lines of research by

their ‘quality’, by measuring their length in terms of the number of inventions they include.

2.2. Spillovers

Spillovers are defined as the external exploitation of the technological contribution of an

invention, where external refers to the set of firms that are different from the inventing

firm. Following this definition, spillovers are measured as the number of external inventions

along the lines of research the originating invention inspires.

For illustration, it is useful to examine a slightly more complicated diffusion pattern, as

shown in figure 3. Capital letters represent inventions, where arrows represent the direction
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of knowledge flow. This figure plots the diffusion pattern of the originating invention A,

where the offspring inventions are B, C, D, E, F , G, H, I and J . To complete the

presentation, the shape of each capital letter represents a different firm, i.e., a circle firm

(the inventing firm), a triangle firm and a square firm.
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Figure 3: Measuring spillovers

Figure 3: This figure illustrates the diffusion pattern of the originating invention A.

Inventions are represented by a capital letter, while the firm that owns the inventions is

represented by a shape (e.g., the inventing firm is the circle, since it owns the originating

invention A). I define the spillovers created by invention A, given this diffusion pattern, as

the number of inventions that are owned by the square and triangle firms (all the firms in

the figure which are different from the inventing firm) along the lines of research invention

A originates.

Following the methodology presented above, in order to measure the technological

11



contribution of invention A, we need to identify the lines of research invention A originates

and weigh them by their ‘quality’. Since a line of research is defined as a singleton

sequence of subsequent developments of the originating knowledge, there are five such lines

of research: A→ B → D → H, A→ B → E → I, A→ C → F → I, A→ C → F → J

and A→ C → G→ J . The technological contribution of invention A following equation

(2.1) is given by:

TCA = (1× 3) + (1× 3) + (1× 3) + (1× 3) + (1× 3) = 15 (2.4)

Since spillovers are defined as the external inventions that compose the lines of research

an invention originates, they are formulated as:

Spilloversi =
X
k∈Ki

LRk × Sk (2.5)

Where, i is an originating invention, Ki is the set of lines of research invention i origi-

nates, k indexes lines of research in this set, LRk is a dummy that receives the value 1 for

line of research k and zero otherwise and Sk is the number of external inventions included

in line of research k. Following this formulation, the spillovers created by invention A are:

SpilloversA = (1× 3) + (1× 2) + (1× 2) + (1× 3) + (1× 3) = 13 (2.6)

Where, the second and third terms, (1× 2) and (1× 2) , correspond to the fact that
invention I is owned by the inventing firm. Thus, invention I is excluded from the spillovers

measure for invention A (the spillovers along lines of research A → B → E → I and

A→ C → F → I are based only on inventions B, E, C and F )9.

Finally, I aim at distinguishing between two types of spillovers: spillovers that con-

tribute to the dynamic research of the inventing firm and spillovers that do not.

9In some patterns of diffusion, the first subsequent development of the originating knowledge is done by
the inventing firm (which is identified as a self-citation). Hence, knowledge does not immediately spread
to other inventors. In this case, the ‘in-house’ subsequent development is not measured as spillovers (where
spillovers along such lines of research occur only if in a future generation knowledge leaves the boundaries
of the inventing firm).
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2.3. Internalized and Externalized lines of research

Two types of lines of research are identified: the first type is lines of research where the

originating knowledge leaves the inventing firm and returns to this firm after having been

further developed by other firms. The second type is lines of research where the originating

knowledge leaves the inventing firm and does not return. Spillovers along the former type

are internalized in the dynamic research of the inventing firm and, therefore, these lines of

research are defined as Internalized lines of research. However, spillovers along the latter

type do not contribute to the dynamic research of the inventing firm, therefore, these lines

of research are defined as Externalized lines of research.

Hence, the spillovers of an invention can be written as:

Spilloversi =
X

j∈Internalizedi

LRj × Sj +
X

t∈Externalizedi

LRt × St (2.7)

Where i denotes an originating invention, Internalizedi is the set of Internalized lines

of research originated in invention i, Externalizedi is the set of Externalized lines of

research originated in invention i, j indexes lines of research in the Internalizedi set and t

indexes lines of research in the Externalizedi set. I define the first term in the right-hand-

side of equation (2.7) as IntSpilli and the second term in the right-hand-side of equation

(2.7) as ExtSpilli. Thus, equation (2.7) becomes:

Spilloversi = IntSpilli +ExtSpilli (2.8)

Technological internalization, IntSharei, is defined as the ratio between IntSpilli and

Spilloversi.

To illustrate this decomposition, it is useful to refer back to figure 3. Out of the five lines

of research that invention A originates, two are Internalized and three are Externalized.

The set InternalizedA is:

InternalizedA = {A→ B → E → I,A→ C → F → I}

13



Similarly, the set ExternalizedA is:

ExternalizedA = {A→ B → D→ H,A→ C → F → J,A→ C → G→ J}

Given this decomposition, IntSpillA = (1× 2) + (1× 2) = 4 (two external inventions
in the first line of research and two external inventions in the second line of research in

the InternalizedA set). Similarly, ExtSpillA = (1× 3) + (1× 3) + (1× 3) = 9 (three

external inventions in each of the three lines of research in the ExternalizedA set). Thus,

IntShareA is 4
13
.

2.4. Empirical methodology

Inventions are empirically identified as patents and knowledge flows as citations (where

knowledge flows from the cited patent to the citing patent). Patents and citations data

contain significant noise and bias10. Nonetheless, these data also offer unique information

on the diffusion pattern of knowledge and sequential innovation, which I believe to be

extremely useful for exploring the ideas developed in this paper.

Hence, the inventions in figures 2 and 3 are empirically identified as patents, whereas

arrows are empirically identified as citations (e.g., an arrow from invention A to invention

B in figures 2 and 3 reflects the fact that patent B cites patent A). The task I am facing

is to effectively draw figure 3 for the sample of originating inventions11.

A unique line of research is empirically identified as a singleton sequence of citations

(where, each patent cites its direct ancestor). A sequence of citations is defined as single-

ton, if it is not fully contained in a longer sequence of citations for the given time period

being explored. After extracting the lines of research for the sample of originating patents,

each line of research is classified as either Internalized or Externalized12.
10See, for example, Trajtenberg (1990) for the potential bias in patents as indicators for innovation

output, and Trajtenberg, Jaffe and Fogarty (2001) for a study on the noise component in citations as
indicators for knowledge flows.
11The design of this sample is explained below.
12The reader who is familiar with the economics of patents literature can find the definition of an
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The period for which lines of research are constructed is restricted to 15 years after the

grant year of the originating patent. For example, for a patent that was granted in 1975,

the youngest patents in all the lines of research it originates cannot be granted after 1990.

Further, citations along a line of research are added as long as the line of research has not

already been classified as Internalized13. Thus, this methodology extracts all the unique

trajectories where knowledge had left the boundaries of its inventor and returned to these

boundaries in a time period of 15 years after the knowledge had been created14, as well as

all the unique trajectories where knowledge had left the boundaries of the inventing firm

and did not return to these boundaries in the same time period15.

3. Generality of patents

The main characteristic of basic knowledge is the extent it spurs follow-up research in

many technology fields. Following Trajtenberg, Henderson and Jaffe (1997), patents are

argued to be more general if the citations they receive spread over a larger number of

fields.

The generality of patent i, denoted by Gi, is computed as one minus the HHI index

Internalized line of research similar to a self-citation. A self-citation is the case where a firm develops its
prior knowledge directly (the first generation of citation the patent receives comes from the inventing firm
itself). An Internalized line of research is the case where the firm indirectly develops its prior knowledge,
after it has been developed by other firms. Thus, an Internalized line of research is a unique indirect self-
citation, which I associate with a higher appropriability, as the existing literature does with self-citations
(e.g., Hall, Jaffe and Trajtenberg (2005)).
13E.g., consider the Internalized line of research A→ B → E → I that is presented in figure 3. Assume

that patent I is cited by patent K, such that this line of research becomes A → B → E → I → K.
The imposed restriction implies that only the line of research A→ B → E → I will be extracted for the
originating patent A.
14Since I refer to the grant year of the patent and not to its application year, the creation date of the

patented knowledge is actually earlier. However, my algorithm builds on the fact that a citing patent
cannot be cited before it cites. This crucial feature of the data can be exploited only by referring to the
grant year of the patent (see Belenzon (2005) for detail on the algorithm).
15It is important to note that this methodology incorporates the case where knowledge is first developed

sequentially ‘in-house’ by the inventing firm (i.e., self-citations). In numerous cases the inventing firm
develops the first follow-up inventions of the originating knowledge. In such lines of research knowledge
leaves the boundaries of the inventing firm via a higher order generation of citation. These lines of research
are classified as Internalized or Externalized following the same criterion described above.
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of concentration across the fields that cite patent i:

Gi = 1−
X
n

µ
CRin

CRi

¶2
(3.1)

Where, n denotes citing fields, CRin is the number of citations received by patent i

from patents in field n and CRi is the total number of citations received by patent i. Self-

citations are excluded fromGi, due to the interest in characterizing follow-up research that

is done outside the boundaries of the inventing firm16. The main technology breakdown

used in the econometric analysis is based on the three-digit US Classification (Nclass),

which includes 400 fields. Gi is based on citations received during the period 1975-1999.

Hall (2002) shows that Gi is downward biased in case patent i receives a small number

of citations and suggests the following bias-corrected measure:

cGi =

µ
CRi

CRi − 1

¶
Gi (3.2)

Since cGi is based on technology field definitions, it is highly sensitive to measurement

error in drawing the boundaries between fields. For example, in case in the Drugs sector,

technology fields are defined more coarsely compared to the Computers sector, it is more

likely for a patent to be more general in the Computers sector when the propensity of

citations is stronger within sectors compared to between sectors. In order to mitigate

this concern, cGi is also constructed based on the following alternative technology classi-

fications17: International-Patent-Class (742 cells), Sub- International-Patent-Class (3008

cells), Hall, Jaffe and Trajtenberg (HJT) subcategories (36 cells) and Manufacturing In-

dustry SIC-IPC classification (37 cells).

Finally, knowledge should be more general if it transfers to fields that are more tech-

nologically remote from the field in which the knowledge was originally invented. Later in

the paper, a more refine cGi measure is developed to take into account the technological

proximity between the citing fields and the field of the cited patent.

16The empirical results are robust to including self-citations in the construction of Gi.
17See Hall and Trajtenberg (2004).
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4. Data

Patents and citations data are taken from the U.S. Patent and Trademark Office from the

NBER archive. The sample of originating patents includes all cited patents held by the

largest 500 patenting firms in the US between 1969 and 198018. It is required that every

firm remains active during the complete period for which the sequences of citations are

constructed leaving the largest 492 inventing firms (all of which are active up to 1995,

which is the last year an offspring patent can be added into a line of research). The set of

originating patents includes 104,694 patents19.

The sample of citing patents that participate in the sequences of citations includes

about 600,000 patents that are held by all US Compustat firms in the USPTO20. These

patents make around 1.7 million citations (either to the originating patents or to other cit-

ing patents21). Based on these citations, 13,107,634 lines of research (singleton sequences

of citations) are extracted, which are originated in 97,921 inventions. 6,773 patents that

appear in the initial set of originating patents do not originate Internalized or External-

ized lines of research (these patents originate lines of research in which all the follow-up

developments of the originating invention are done ‘in-house’). 999,718 lines of research

are classified as Internalized and are originated in 29,964 patents, while the remainder

12,107,916 lines of research are classified as Externalized and are originated in 97,212

18The year 1969 is the earliest year for which there is citations information for the patents held by the
firms in the sample. Also, in practice I could extract the diffusion pattern of patents that were granted
up to 1985, since the citations data goes up to 1999. However, there is a huge spike in the number of
citations in 1995 (see figure A3), where the number of citations rises by around 800,000 in the period
1995-1999. In addition to the feasibly of extracting sequences of citations from these huge data, there is
also a concern that the explosion in citations in this period is not associated with stronger learning and
sequential innovation, but with changes in the patenting behavior of firms, which could contaminate the
results.
19The set of originating patents includes 45 percent of all cited patents between 1969 and 1980 that are

held by US Compustat firms that were matched to the USPTO by Hall, Jaffe and Trajtenberg (2001).
20Hall, Jaffe and Trajtenberg (2001) matched 2466 US Compustat firms to the USPTO. The citing

patents of all these firms are allowed to take part in constructing the patterns of diffusion of the originating
patents. The sample of citing patents includes about 30 percent of all citing patents in the USPTO (and
50 percent of the citing patents where the main inventor is a US resident).
21Where 599,884 patents make 1,760,143 citations to 573,373 patents in the sample.
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patents22 .

Detail on the algorithm developed to construct the diffusion data is provided in Be-

lenzon (2005).

Table 1 describes the variation of lines of research across technology sectors and time.

The largest number of lines of research per citation received by an originating patent is in

the “Electrical and Electronics” sector. This may indicate a high technological complexity

in this sector, where complexity refers to the various distinct ways along which knowledge

can be sequentially developed. 7.6 percent of the lines of research are Internalized. This

share appears to be rather stable over time, with an exception in “Drugs and Medicals”.

In the period 1978-1980 there is a large drop in the share of Internalized lines of research

in this sector, which may be associated with the Biomed revolution that took place at the

end of the 70’s. I plan to investigate this separately in a future research.

[Table 1 about here]

Table A1 provides summary statistics for the main patent variables. The average

technological internalization is 4.723 (i.e., on average, 4.7 percent of the spillovers created

by a patent are defined as Internalized). The unconditional correlation between IntShare

and cGi is -0.063 (with p < 0.01).

5. Estimation

The baseline specification links technological internalization to generality as following:

IntSharei = β0 + β1cGi + β2Ci tesi + Z 0iβ3 + τ i + φi + ηi + �i (5.1)

Where, i denotes the originating patent, Citesi is the number of citations patent i

receives (over the period 1975-1999), Zi is a vector of additional controls described below,

ηi is a complete set of dummies for the inventing firms (the owner of patent i), τ i is a

22The remaining 709 originating patents inspire only Internalized lines research (thus, all the subsequent
generations of developments are done by the inventing firm).
23Belenzon (2005) shows that this percentage is rather stable over time and across fields.
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complete set of dummies for the grant year of patent i, φi is a complete set of dummies

for the field of patent i and �i is an iid error term.

Cites are added as a control forcGi, since both measures are based on counts of forward

citations. As mentioned above, cGi is likely to be higher when a patent receives more

citations24. In case Cites has a negative effect on IntShare, β1 will be downwards biased.

The set of grant year dummies, τ i, is included since patents are pooled from different

time periods (1969-1980). The main variable that is likely to substantially vary over time

is Cites (see figure A3). This time trend may cause patents that are granted in later

periods to appear on average more general, if cGi is positively correlated with Cites.

The set of field dummies control for technology location: different fields may system-

atically vary in terms of patterns of diffusion, which could affect both IntShare an cGi.

A complete set of firm dummies is also included. Although the regression is at the

patent level, the underlying level of technological internalization is determined at the firm

level and should be affected by firm-specific attributes. To the extent these attributes

are correlated with cGi, β1 would be biased. For example, firms that are more specialized

in research could be better at internalizing the spillovers of their knowledge. If more

specialized firms invent less general knowledge (as would be expected under the hypothesis

that basic research is endogenously determined), β1 will be downward biased.

Zi includes three additional controls: Complexity, PatShare and PatCon.

Complexityi - Complexityi measures the degree to which the fields that cite patent i

are diversified in terms of lines of research. Fields that include a higher average number

of lines of research are argued to be more complex (as there are more unique ways to

sequentially develop knowledge). Complexityi is calculated as following:

Complexityi =
X
n

ωn × Comn

Where, n denotes technology fields that cite patent i, ωn is the share of citations

24The bias-correction used in this paper aims to eliminate the downward bias in Gi when a patent
receives only few citations. The correlation between cGi and Cites is 0.07, compared to 0.23 for Gi

(uncorrected).
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patent i receives from technology field n and Comn is the technological complexity in field

n. Comn is defined as the average number of lines of research per citation received by an

originating patent (see table 1) and is based on the Nclass level.

A negative correlation between IntSharei and Complexityi would imply that it is

harder to internalize own spillovers in case these spillovers are spread over more lines of

research. This may indicate that specialization in research occurs not only between fields,

but also within fields across lines of research. In the absence of within-field specialization,

Complexityi should not negatively affect the degree of technological internalization.

PatSharei - PatSharei measures the overlap between the fields that cite patent i and

the patent distribution of the inventing firm. A higher PatSharei implies a higher con-

centration of the research activity of the inventing firm across the citing fields. PatSharei

is expected to be positively correlated with IntShare: the inventing firm would find it

easier to internalize own spillovers where they are concentrated across fields to which the

research of the inventing firm is more directed. PatSharei is calculated as the HHI index

for the share of the inventing firm’s patents in the technology fields that cite patent i

(weighted by the share of citations patent i receives from every citing field):

PatSharei =
X
n

ωn × (Sharen)2

Where, Sharen is the share of patents the inventing firm has in technology field n and

ωn is as defined above.

PatConj - PatConj measures the research diversification of firm j as the HHI index

of the concentration of the firm’s patents across technology fields, as following:

PatConj =
X
k

(Sharek)
2

Where, j denotes the inventing firm, k denotes fields firm j operates in and Sharek is

the share of patents firm j has in field k out of the total patents firm j has (computed over

the period 1969-1999). Since PatCon is a firm-level measure (i.e., does not vary across

patents within firms), its effect will not be identified in the presence of firm fixed-effects,
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which are widely used in the econometric analysis. Yet, introducing PatConj is interesting

with regard to its correlation with cGi. To the extent firms decide the level of generality of

their knowledge, PatCon and cGi would be negatively correlated: more specialized firms

will choose more specialized knowledge.

5.1. Results

Table 2 summarizes the main estimation results. In column 1, equation (5.1) is estimated

without firm fixed-effects (i.e., conditioning on cites received, fields dummies, year dum-

mies and a dummy for IntShare equals zero). The coefficient on cGi (β1) is negative and

significant. This implies that patents that are cited by more fields exhibit less technological

internalization, which supports the main hypothesis of this paper.

In column 2, PatConj is added. The coefficient on PatCon is positive and significant:

a higher concentration in research increases technological internalization. The positive

effect of PatCon on IntShare is a consistent explanation to the finding reported by Hall

and Ziedonis (2001) of an increased specialization of entrant firms in the “Semiconduc-

tors” industry. In this industry sequential innovation plays a major role and the dynamic

consideration of technological internalization is likely to be important. Furthermore, β1
falls in absolute value when controlling for PatCon. This fall indicates a negative correla-

tion between PatConj and cGi (the correlation is -0.147 with a p value < 0.01), i.e., firms

that have a more diversified research capabilities invent more general knowledge. This is

consistent with the hypothesis that firms choose the level of generality of their knowledge:

in order to technologically appropriate significant private rents on general knowledge the

inventing firm would need to conduct follow-up research in numerous fields. Knowing

this, firms with more diversified research capabilities will choose to invent more general

knowledge. Yet, β1 remains negative and significant also after controlling for research

diversification.

In column 3, a complete set of firm dummies is added to control for the attributes

of firms that can affect both IntShare and cGi. In this specification, only the variation

across patents within inventing firms is exploited. With firm fixed-effects β1 continues to
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increase in absolute value, however, it remains negative and significant. Based on this

specification, at the mean, moving from the 25th percentile to the 75th percentile in cGi

lowers IntShare by 9 percent25.

When exploiting only the variation across patents within firms, there may still be a

patent-level variation in attributes that are correlated with both cGi and IntShare. In

case knowledge “spills”to technology fields that are more complex, where complexity is

measured as the technology field average number of lines of research originated in a patent,

it should become harder for the inventing firm to internalize a larger share of the spillovers

it creates. Complexity is added in column 4. Complexity has a negative and significant

effect on IntShare, as expected. Finding this negative effect implies that diversification

in research is evident not only between technology fields but also within technology fields

across lines of research (otherwise, technological internalization would not be harder to

achieve when citing fields have a higher average number of lines of research).

In order to illustrate the range of the effect of Complexity, consider the following

calculation: suppose knowledge “spills” only to one technology field (cGi is zero). Con-

sider two extreme fields in term of their complexity: Nclass 438 (“Semiconductor Device

Manufacturing: Process”), which has a complexity measure of 112.326, and Nclass 139

(“Textiles: Weaving”), which has a complexity measure of 5.1. IntShare would be higher

in the latter pattern of diffusion by about 60 percent compared to the former27.

Technological internalization should be easier to achieve in case the inventing firm is

already active in research in the citing fields. To test this, column 5 adds PatShare,

which measures the overlap between the research activity of the inventing firm and the

fields that cite its knowledge. As expected, PatShare has a positive and significant effect

on IntShare. Thus, the extent the inventing firm is active in the fields its knowledge

“spills” to, technological internalization would be higher. Evaluated at the mean, a one

25The predicted IntShare (evaluated at the mean) is 5.077 when cGi is at the 25th percentile. IntShare
drops to 4.594 when cGi increases to the 75th percentile.
26I.e., 112.3 lines of research per citation received by an originating patent.
27When knowledge “spills” to Nclass 438, the predicted IntShare, evaluated at the mean, is 3.365,

compared to 5.616, when knowledge “spills” to Nclass 139.
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standard deviation increase in PatShare raises IntShare by 15 percent (from 4.7 percent

to 5.4 percent).28

[Table 2 about here]

5.2. Robustness tests

5.2.1. Technological proximity between fields

cGi does not take into account the ‘distance’ knowledge travels across fields: knowledge

would be more general if it is cited by many fields that are also more technologically remote

from the cited field. In this section cGi is refined by weighting the citing fields according

to their technological distance from the field of patent i, as indicated by the propensity

of citations (fields that are closer to the field of patent i will receive a lower weight)29.

Following Caballero and Jaffe (1993) and Jaffe and Ttajtenberg (1999), the propensity of

citations is estimated by aggregating patents into “cells”, based on characteristics of the

citing and cited patents. The following equation is estimated by nonlinear least-squares:

ρss0tT = αss0αsαs0αTαt exp(−β1(T − t)) (1− exp (−β2(T − t))) (5.2)

Where, s denotes the field of the citing patent, s0 denotes the technology field of the

cited patent, T is the grant year of the citing patent and t is the grant year of the cited

patent. s includes 36 fields based on the HJT subcategory classification and s0 includes the

6 main fields. αss0 denotes a complete set of 215 dummies for all pair-wise combinations

of the citing and cited fields (36× 6− 1), αs is a complete set of dummies for the citing

fields (35 dummies), αs0 is a complete set of dummies for the cited technology fields (5

28Moreover, patents that create more spillovers could also be more general. In case spillovers are
negatively correlated with IntShare, β1 will be downward biased. In order to test this, I also add
Spillovers (the sum of IntSpill and ExtSpill) into the right-hand-side of equation (5.1). β1 increases
to -1.033 with a standard error of 0.128, where there is no important change in the other coefficients.
The effect of Spillovers is negative and significant: at the mean, a one standard deviation increase in
Spillovers lowers IntShare by 18 percent.
29It is also important to weight citing fields by the propensity to cite since larger fields are more likely

to cite a given patent. In case a patent is surrounded by large technology fields, it can appear to be
general simply because there is a higher probability it will be cited outside its own field.
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dummies), T is a complete set of year dummies for the citing patent (24 dummies for

the period 1975-1999) and t is a complete set of dummies for the grant year of the cited

patents (7 dummies for the period cohorts of the cited patents30). ρss0tT is computed as:

ρss0tT =
Css0tT

PsTPs0t
(5.3)

Where, Css0tT is the number of citations from the citing field s at year T to the cited

field s0 at year t, PsT is the number of citing patents in the cell and Ps0t is the number

cited patents in the cell31.

The main estimation results of equation (5.2) are summarized in table A5, which

reports the estimated set of coefficients αss0 , dαss0. It is clearly evident that the propensity

of citations is much stronger within fields in the same main technology sector, which

implies that knowledge is less likely to travel across the boundaries of main technology

fields. This highlights the sensitivity of Gi to measurement error in the definition of the

boundaries of fields within the main technology fields. The next section tests this concern.

The propensity of citations between Nclass fields is estimated in two stages32: in the

first stage, equation (5.2) is estimated to obtain the predicted propensity of citations

between pairs of citing and cited fields as explained above (dαss0). In the second stage, the

propensity of citations from Nclass n to Nclass n0 is assumed to be proportional to dαss0 .

Thus, conditional on a citation coming from field s to field s0, the probability this citation

comes from a randomly drawn patent in Nclass n ∈ s to Nclass n0 ∈ s0 is:

pnn0 =dαss0 × p(n ∈ s | s)× p(n0 ∈ s0 | s0) (5.4)

Where, p(n ∈ s | s) is the probability that the citing patent belongs to field n, condi-

30The periods are: 1963-1969, 1970-1975, 1976-1980, 1981-1985, 1986-1990, 1991-1995 and 1996-1999.
31In order to deal with potential heteroskedasity and to improve efficiency, I always weight the obser-

vations by the reciprocal of the
p
(Nltg) (NLT ). This weighting does not importantly affect the results,

however, it does improve the fit of the model (consistently with Jaffe and Trajtenberg (1999)).
32Potentially, one would allocate patents into cells in the most refine manner, i.e., at the Nclass level

(since cGi is based on the Nclass classification). However, this is not feasible computationally using this
estimation approach, as there are 400 Nclass fields, which would require estimating 400×400−1 coefficients
(αss0).
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tional on the citation coming from field s and p(n0 ∈ s0 | s) is the probability that the cited
patent belongs to field n0, conditional on the citation being directed to field s0. p(n ∈ s | s)
is calculated as the share of patents in field n ∈ s out of the total patents in field s (over

the period, 1975-1999) and p(n0 ∈ s0 | s0) is calculated as the share of patents in field
n0 ∈ s0 out of all patents in field s0 (over the period 1963-1998). Finally, the weights, ωnn0

that are assigned to the citing technology fields are computed as ωnn0 =
1

1+pnn0
33.

The weighted measure of generality (WGi) is:

WGi = 1−
X
n

ωnn0

µ
CRin

CRi

¶2
(5.5)

WGi follows the same bias correction as Gi (denoted by [WGi). Table A4 summarizes

the main statistics for the variables used in estimating equation (5.2) and for WGi.

Table 3 reports the estimation results for[WGi for the equivalent specifications reported

in table 2. The effect of [WGi is negative and significant in all specifications. Compared to

the estimation with cGi, the effect of Compelxity remains unchanged, whereas the effect

of PatShare rises. Overall, the results are stable to the more refine measure of generality

that also takes into account the distance knowledge has traveled across fields as inferred

from the estimated propensity of citations34.

[Table 3 about here]

5.2.2. Alternative breakdown of technology fields

The definition of generality builds on Nclass fields. In case there is a measurement error

in this classification that is correlated with IntShare, β1 will be biased. For example,

the number of different Nclass fields in “Drugs and Medicals” is only 14, whereas the

33Other functional forms which are decreasing in the propensity to cite have been experimented with
(e.g., ωnn0 = 1− pnn0) to find a similar pattern of results.
34I also construct cGi while considering only citations from Nclass fields that are not in the same main

technology sector as patent i. The coefficient on cGi in an equivalent specification to column 6 in table 2 is
-1.274 with a standard error of 0.154. Similarly, The coefficient on cGi in an equivalent specification when
only considering citations from Nclass fields that are not in the same HJT subcategory fields as patent i
is -1.673 with a standard error of -0.182.
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number Nclass fields in “Electrical and Electronics” is 50. Thus, patents in “Electrical

and Electronics” are likely to be more general than patents in “Drugs and Medicals”,

especially in light of the higher propensity of citations within these fields rather than

between, as discussed above (the average of cGi in “Electrical and Electronics” is 0.503,

compared to 0.434 in “Drugs and Medicals”). In case IntShare is higher for patents in

“Drugs and Medicals” and the technology fields in “Drugs and Medicals” are defined too

broadly, β1 will be downward-biased.

In order to test this concern, the estimation results with additional four generality

measures are reported, as described in section 3. Table 4 summarizes the estimation

results. The negative and significant effect of cGi on IntShare is highly robust across the

different field classifications. Regarding Complexity, it is always negative and significant,

with the exception of the SubIPC specification, where the effect of Complexity disappears.

Similarly, PatShare is positive and significant, with the exception of the SIC − IPC

specification, where it is not significant.

[Table 4 about here]

5.2.3. Adding Originality

The third robustness test looks at an additional “basicness” characteristic: the originality

of the patent (following Henderson, Jaffe and Trajtenberg (1993)). Originality measures

the extent knowledge builds on many technology fields, under the conjecture that a more

original patent integrates pieces of knowledge frommany different areas of research. In this

respect, more original patents are also more basic. Originality is constructed as following:

Oi = 1−
X
n

µ
CMin

CMi

¶2
(5.6)

Where, n denotes fields that patent i cites, CMin is the number of citations made by

patent i to field n and CMi is the total number of citations made by patent i.

Similarly to generality, originality is downward biased for patents that make a small

number of citations. Thus, in all specifications where originality is included the number
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of citations made by patent i (labeled as BackCites) is also included. The equivalent

bias-correction is:

cOi =

µ
CMi

CMi − 1

¶
Oi (5.7)

For originality, backward looking data is used. Since information on citations made is

available only from 1975 onwards, the sample of originating patents now includes only the

patents that were granted between 1975 and 1980.

The estimation results for the effect of originality are reported in table 5. In all

specifications, there is a negative and significant effect of originality on IntShare. In

columns 1 and 2 only cOi and BackCites are included with and without firm fixed-effects,

respectively. There is no important change in the coefficient on cOi when firm fixed-

effects are added, which implies that cOi is not strongly correlated with characteristics

of the inventing firm. In column 3, cGi and Ci tes are added. The coefficient on cOi

halves, however it remains significant. Hence, there is a positive correlation between

originality and generality, which implies that inventions that synthesize knowledge from

many technology fields (i.e., more original), also spread to more technology fields (i.e.,

more general). Yet, even when controlling for generality, the coefficient on originality

remains negative and significant.

In columns 4 and 5 Complexity and PatShare are added with no major change in the

results.

Overall, there is strong evidence that not only the generality of knowledge matters for

technological internalization, but also its originality. There is no reason to suspect that

more original patents will have lower technological internalization. One possibility would

be that more original patents are also more general (the correlation between generality

and originality is 0.3). I also add an interaction term between originality and generality

to test whether the effect of originality comes only from the higher likelihood of being

more general. The coefficient on the interaction term is positive but not significant (0.372

with a standard error of 0.472) and there is no important change in the coefficients on
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either originality or generality (-0.559 with a standard error of 0.279 and -1.685 with a

standard error of 0.296, respectively). From this is concluded that there is a separate

channel through which more original patents exhibit less technological internalization, in

addition to the higher likelihood of also being more general.

[Table 5 about here]

5.2.4. A Probit estimation

The final robustness test relates to the probability that a patent creates Internalized

spillovers. Only about 30 percent of patents in the sample create Internalize spillovers

(where 70 percent of the patents create only Externalized spillovers). Table 6 reports the

estimation results of a Probit specification where the dependent variable is a dummy that

receives the value of one if the patent creates Internalized spillovers and zero otherwise.

The results are highly consistent with previous findings. As patents become more general

and original, the probability of creating Internalized spillovers drops.

Thus, not only that generality and originality are negatively correlated with the share of

Internalized spillovers, they are also negatively correlated with the probability of creating

positive Internalized spillovers.

Complexity has a positive and significant effect in the Probit specification (where in

previous estimations, its effect was significantly negative). This implies that the proba-

bility of creating positive Internalized spillovers is higher when knowledge “spills”to fields

that are more diversified in terms of the possibilities they introduce for follow-up research.

Thus, when the inventing firm has more possibilities for reabsorbing its “spilled” knowl-

edge, the probability that some internalization of spillovers occurs rises.

[Table 6 about here]

5.3. Market value and technological internalization

The effect of the knowledge stock of the firm on its market value should incorporate the

dynamic consideration of technological internalization. This section shows that IntShare

positively affect private returns to knowledge in a market value estimation framework. Es-
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timating the effect of IntShare on market value would also allow quantifying the negative

effect of generality on private returns.

Since this section exploits the firm-level variation in technological internalization,

IntShare is aggregated to the firm-level by taking its mean over the set of originating

patents held by the inventing firms. For ease of notations, IntShare is not relabeled,

however, in this section it refers only to the firm-level aggregate.

5.3.1. Accounting data

The accounting data (sales, R&D, capital, etc.) and market value data for the sample of

inventing firms is taken from US Compustat for the period 1980-2001. The accounting

data have been ‘cleaned’ to remove accounting years with extremely large jumps in sales,

employment or capital signalling merger and acquisition activity, leaving a total of 476

firms and 9,454 observations.

Table A2 summarizes the descriptive statistics for InShare as well as for the main

accounting variables. About 40 percent of firms do not create Internalized spillovers at

all, whereas all firms create Externalized spillovers (where only about 30 percent of patents

create Internalized spillovers).

In order to estimate the effect of technological internalization on private returns, a

simple version of the value function approach proposed by Griliches (1981)35 is adopted.

The market value of firm i at period t, Vit, takes the following form:

Vit = κit (Ait + (γ0 + γ1IntSharei)Kit) (5.8)

Where, Ait denotes physical assets, Kit is the R&D stock (representing knowledge

stock), γ is the shadow price of the R&D stock (higher values of γ indicate that the

market valuation of the knowledge stock relative to physical stock rises)36. The term

γ0 + γ1IntSpilli captures the private returns to innovation, which are expected to rise

with IntShare (i.e., γ1 is expected to be positive).

35See also Jaffe (1986), Hall et al (2005) or Lanjouw and Schankerman (2004).
36A constant returns in the market value function has been assumed, consistently with previous studies.
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Taking logarithms and dividing by Ait, the left-hand-side of equation (5.1) becomes

the traditional Tobin’s average Q, where its deviation from unity depends on the ratio

between the R&D stock to the tangible stock
¡
K
A

¢
, IntShare and κit, as following:

log

µ
Vit
Ait

¶
= log κit + log

µ
1 + (γ0 + γ1IntSharei)

Kit

Ait

¶
(5.9)

Finally, κit is specified as:

log κit = X 0
itβ0 + β1IntSharei + τ t + ηi + �it (5.10)

Where, Xit is a vector of controls (such as industry and technology dummies, sales,

patents stock, etc.), τ t is a complete set of time dummies, ηi is the firm fixed-effect, which

is discussed later in this section, and �it is an idiosyncratic error term. The linear terms of

IntShare is included mainly as a control for their interaction with the R&D stock. Since

IntShare has many zero values, a dummy for IntShare equals zero is always included.

Thus, the following equation is estimated by non-linear least squares (where standard

errors are clustered by firms):

log

µ
Vit
Ait

¶
= X 0

itβ0+β1IntSharei+log

µ
1 + (γ0 + γ1IntSharei)

Kit

Ait

¶
+τ t+ηi+�it (5.11)

5.3.2. Estimation results for Tobin’s Q

All the Tobin’s Q specifications include a complete set of two-digit industry dummies (78

dummy variables), a set of indicators for the share of patents the firm has in each of the six

main technology sectors, a complete set of year dummies (20 dummy variables), a dummy

variable that receives the value one if the R&D stock of the firm is zero and a dummy

variable that receives the value one if IntShare is zero37.
37I control for firm fixed-effects by adopting the “mean scaling” approach developed by Blundell, Griffith

and Van Reenen (1999). Their method assumes that computing the mean of Tobin’s Q in a long enough
pre-estimation period can be used as an initial condition to proxy for unobserved heterogeneity, if the first
moment is stationary.
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Table 7 reports the estimation results of equation (5.11). There is strong evidence of

a positive effect of IntShare on market values both interacted with the R&D stock and

linearly. This supports technological internalization being an important channel through

which private rents are appropriated in a dynamic framework of sequential innovation38.

Belenzon (2006) reports numerous robustness tests that support and extend this finding

(for brevity, they are no reported here)39.

Based on the estimates reported in column 2, the elasticity of market value with respect

to the R&D stock, evaluated at the mean, is 0.11040. This implies that an additional one

dollar spent on R&D raises market value by 0.302 dollar (referred to as private returns).

A one standard deviation increase in IntShare raises private returns to 0.452 dollar (thus,

a 50 percent increase).

Given this estimate, the effect of generality on private returns could be simply com-

puted (∂V
∂ bG = ∂V

∂IntShare
× ∂ntShare

∂ bG ). From column 5 in table 3, a one standard deviation

decrease in bG raises IntShare at the patent level by 0.344 (0.319× 1.079). Suppose that
the same increase occurs for IntShare at the firm level (e.g., the generality of all patents

held by the inventing firm drops by one standard deviation). At the mean, a 0.344 increase

in IntShare raises the valuation of an additional one dollar spend on R&D by 4.8 percent

(50× 0.344
3.524

)41. Similar calculations show that when moving from the most general ( bG = 1)
38Belenzon (2006) estimates the effects of IntSpill and ExtSpill: IntSpill has a positive and significant

effect and ExtSpill has a negative and significant effect. Both are identified via their interaction with the
R&D stock and linearly.
39The most important robustness test is to include the citations-weighted patents stock linearly and

interacted with the R&D stock. Firms with a larger patents stock are more likely to randomly indirectly
cite their previous patents (i.e., have a higher IntShare). In case a larger patent stock also positively
affects private returns the coefficient on IntShare will be upward biased. The coefficients on the linear
and interacted terms of the citations-weighted patents stock are positive, yet only the linear term is
significant (0.159 with a standard error of 0.037 and 0.020 with a standard error of 0.043, respectively).
The coefficients on the linear and interacted terms of IntShare remain positive and significant with no
important change in their size (see also Belenzon (2006) table 7).
40The estimated elasticity is lower from that reported in previous studies. For example, Bloom,

Schankerman and Van Reenen (2005) report an elasticity of 0.24, using a similar estimation sample
without industry or technology effects.
41Moving from the 75th percentile to the 25th percentile in bG raises the market valuation of an additional

dollar spent on R&D by 6.9 percent (50× (0.765−0.282)
3.524 ).
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to the most specialized knowledge ( bG = 0) private returns rise by 15.3 percent (50× 1.079
3.524

),

at the mean42.

[Table 7 about here]

6. Summary and conclusions

This paper empirically tests the classical argument that inventors face insufficient private

incentive for basic research (Nelson (1959), Arrow (1962)). In a dynamic framework of

sequential innovation the commercial value of basic knowledge intensifies when follow-up

developments arrive mostly from outside the boundaries of the inventing firm. Thus, for

the inventing firm to capture substantial private rents it must internalize the spillovers its

knowledge creates. The main hypothesis of this paper is that as knowledge becomes more

basic technological internalization diminishes, since only firms with a wider technology

base could achieve such internalization. The empirical prediction of this hypothesis is

that there would be a negative correlation between the generality of knowledge and tech-

nological internalization. Yet, a competing hypothesis is that firms choose the “basicness”

level of their knowledge: basic knowledge is invented only by firms with a wide technology

base that allows internalizing private rents even when they are spread over many fields.

The empirical prediction of this competing hypothesis is that the a negative correlation

between the generality of knowledge and technological internalization will be substantially

mitigated.

Using data on patents and citations a novel empirical methodology is developed that

allows measuring the extent spillovers feed back into the inventing firm. Based on this

methodology, the hypothesis that more general knowledge exhibits lower technological

internalization is confirmed. This is inconsistent with basic research being endogenously

chosen by firms (since firms that choose to conduct basic research are those that are better

42I also estimate the effect of the firm-level average of bG on market value (linearly and interacted with
the R&D stock). Adding bG to column 5 in table 7 does not affect the coefficient on IntShare in an
important way. The coefficients on the linear and interacted terms of bG are negative but not significant
(-0.071 with a standard error of 0.048 and -0.269 with a standard error of 0.221).
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able to achieve high technological internalization).

A market value equation is estimated to confirm that technological internalization is an

important channel through which private rents are appropriated. The estimates from the

value function are then used to quantify the impact of generality on private returns. A one

standard deviation increase in technological internalization raises the market valuation of

an additional dollar spent on R&D by 50 percent, evaluated at the mean. Based on this

estimate, a one standard deviation increase in the generality of knowledge lowers private

returns by 4.8 percent. Moving from the most specialized to the most general knowledge

(the two extreme points on the generality spectrum) lowers private returns by 15.3 percent,

evaluated at the mean.

The findings of this paper are interpreted as supporting the classical problem of un-

derinvestment in basic research. Private returns depend on the extent the inventing firm

internalizes the spillovers its knowledge creates. Such internalization is less likely to occur

as knowledge becomes more general, and in this respect more basic.
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A. Appendices
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cat refers to one-digit technology sectors, subcat refers to two-digits technology sectors and nclass refers 
to three-digits technology sectors.

Figure A1: An example for an Externalized line of research

Figure A1: This figure shows a unique line of research originated in invention 3,836,478,
which is owned by IBM (the inventing firm). Since knowledge did not return to IBM in
the period 1974-1989, this line of research is Externalized.
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cat=4, subcat=46, nclass=438, 
year=1979
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cat refers to one-digit technology sectors, subcat refers to two-digits technology sectors and nclass refers 
to three-digits technology sectors.

Figure A2: An example for an Internalized line of research

Figure A2: This figure shows a unique line of research originated in invention 4,131,983,
which is owned by Texas Instruments (the inventing firm). Since knowledge returned to
Texas Instruments in the period 1979-1994, this line of research is Internalized.
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Figure A3: This figure presents the number of citations made and received by patents
in our sample. The upward sloping graph shows the number of citations made each year,
where the U shaped curve shows the number of citations received each year.

A.1. Data

The sample combines data from two datasets:
The NBER USPTO patents database includes detailed patenting and citations

information for around 2,600 US firms (as described in Hall, Jaffe and Trajtenberg (2001))
and a list of all the citations made in the period 1975-1999.
The Compustat North-America dataset provides full accounts data for over

25,000 US firms from 1980 to 2001. This provides information on the key accounting
information of R&D, fixed assets, employment, sales, etc.
I started by matching the Compustat accounting data to the USPTO data, and kept

firms with 1 or more patents in the period 1969-1980 that received at least one citation
from the 2,600 firms in the NBER USPTO data set between 1975 and 1995. This leaves
a sample of 492 firms.
The accounting dataset has been ‘cleaned’ to remove accounting years with extremely

large jumps (>+200% or <-66%) in sales, employment or capital signaling merger and
acquisition activity, leaving a total of 476 firms and 9,454 observations.
The book value of capital is the net stock of property, plant and equipment (Compustat

Mnemonic PPENT); Employment is the number of employees (EMP). R&D (XRD) is used
to create R&D capital stocks calculated using a perpetual inventory method with a 15%
depreciation rate (Hall et al, 2005). The citations-weighted patent stock was constructed
by normalizing the number of patents the firm owns according to the number of citations
it receives and the average number of citations to all patents in the same year. Given this
normalized patents count the stock is constructed using the perpetual inventory method.
The citations stock (used as a pre-estimation control) was constructed equivalently to the
R&D stock. For Tobin’s Q, firm value is the sum of the values of common stock, preferred
stock, total debt net of current assets (Mnemonics MKVAF, PSTK, DT and ACT). Book
value of capital includes net plant, property and equipment, inventories, investments in
unconsolidated subsidiaries and intangibles other than R&D (Mnemonics PPENT, INVT,
IVAEQ, IVAO and INTAN). Tobin’s Q was set to 0.1 for values below 0.1 and at 20 for
values above 20. See also Lanjouw and Schankerman (2004). Industry price deflators
were taken from Bartelsman, Becker and Gray, 2000, until 1996 and from the BEA 4-digit
NAICS Shipment Price Deflators afterwards. See Belenzon (2006) for more detail on the
construction of the accounting data.
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Number of lines 
of researcha

1979-19801976-19781969-1975Total sampleTotal sample

7.2%7.6%8.2%7.6%46.8Pooled

5.7%6.3%6.4%6.2%28.8Chemicals

7.1%7.1%8.8%7.6%30.2Computers and 
Communications

8.4%16.8%19.1%15.0%16.8Drugs and Medicals

7.5%7.1%7.5%7.4%78Electrical and 
Electronics

7.9%9.1%9.1%8.8%15.5Mechanicals

bComputed as the ratio between Internalized lines of research and the total number of lines of research.

Table 1

 Internalized and Externalized lines of research

Share of Internalized lines of research b

aComputed as the average number of lines of research per citations received by an originating patent for 
the entire period of the sample.



(6)(5)(4)(3)(2)(1)

-1.282*-1.311*-1.627*-1.654*-1.665*-1.728*Generality
(0.187)(0.194)(0.198)(0.204)(0.210)(0.215)

-0.098*-0.097*-0.098*-0.098*-0.102*-0.099*Cites 
(0.009)(0.009)(0.010)(0.010)(0.010)(0.010)

7.752*PatCon
(1.940)

-0.021*-0.021*Complexity
(0.004)(0.004)

7.559*7.545*PatShare
(2.638)(2.608)

YesYesYesYesNoNoFirm-fixed effects

92,03292,03292,03292,03292,03292,032Observations

0.3380.3370.3370.3360.3220.321R²

Table 2
The effect of Generality on IntShare

Cites is the number of direct citations the originating patent receives (over the period 
1975-1999). PatCon is a firm-level measure of research diversification (it is collinear 
with the firm fixed-effect). A higher PatCon implies a lower research diversification. 

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered by firms).

All regressions include a complete set of two-digit technology field dummies (36), grant 
year dummies (10) and a dummy for IntShare equals zero.

Dependent variable: IntShare. OLS estimation

Generality, Complexity and PatShare are based on the US Nclass classification.

* denotes a significance level of 5 percent.



(5)(4)(3)(2)(1)

-1.079*-1.096*-1.179*-1.197*-1.249*Generality
(0.125)(0.129)(0.132)(0.135)(0.145)

-0.098*-0.097*-0.097*-0.097*-0.099*Cites 
(0.009)(0.009)(0.009)(0.009)(0.010)

-0.021*-0.021*Complexity
(0.004)(0.004)

10.933*11.008*PatShare
(4.346)(4.338)

YesYesYesYesNoFirm-fixed effects

92,03292,03292,03292,03292,032Observations

0.3370.3360.3370.3360.321R²

Table 3
The effect of the Weighted-Generality on IntShare

Cites is the number of direct citations the originating patent receives (over the period 
1975-1999).

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered by firms).
All regressions include a complete set of two-digit technology field dummies (36), 
grant year dummies (10) and a dummy for IntShare equals zero.

Dependent variable: IntShare. OLS estimation

Generality, Complexity and PatShare are based on the US Nclass classification.
* denotes a significance level of 5 percent.



(5)(4)(3)(2)(1)

SIC-IPCSubIPCSubHJTIPC Nclass

-1.466*-2.007*-1.091*-1.359*-1.486*Generality
(0.196)(0.263)(0.152)(0.209)(0.188)

-0.099*-0.095*-0.099*-0.098*-0.098*Cites 
(0.010)(0.009)(0.010)(0.010)(0.009)

-0.018*-0.001-0.052*-0.005*-0.021*Complexity
(0.005)(0.005)(0.007)(0.001)(0.004)

-3.24918.516*8.200*15.288*10.580*PatShare
(4.153)(6.425)(2.599)(4.418)(4.314)

YesYesYesYesYesFirm-fixed effects

92,03292,03292,03292,03292,032Observations

0.3360.3360.3370.3380.337R²
Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered by firms).
All regressions include a complete set of two-digit technology field dummies (36), 
grant year dummies (10) and a dummy for IntShare equals zero.

Cites is the number of direct citations the originating patent receives (over the 
period 1975-1999).

* denotes a significance level of 5 percent.

Table 4

Dependent variable: IntShare. OLS estimation

The effect of Generality on IntShare: alternative measures of 
Generality



(5)(4)(3)(2)(1)

-0.445*-0.442*-0.523*-1.049*-1.084Originality
(0.157)(0.158)(0.162)(0.027)(0.212)

-1.873*-1.746*-1.992*Generality
(0.312)(0.311)(0.338)

-0.055*-0.059*-0.057*-0.092*-0.097*BackCites
(0.020)(0.020)(0.021)(0.023)(0.023)

-0.093*-0.084*-0.084*Cites
(0.012)(0.011)(0.011)

-0.028*-0.029*Complexity
(0.005)(0.005)

14.575*14.529*PatShare
(5.106)(5.159)

0.169*Forward Lag
(0.028)

YesYesYesYesNoFirm-fixed effects

38,74538,74538,74538,74538,745Observations

0.3190.3180.3160.3070.281R²

Table 5
The effect of Generality and Originality on IntShare

Dependent variable: IntShare. OLS estimation.

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered by firms).

Cites is the number of direct citations the originating patent receives (over the 
period 1975-1999). BackCites is the number of citations made by the originating 
patent. 

Since Originality and BackCites are backwards looking, the sample of 
originating patents covers only the originating patents granted between 1975 
and 1980 (since data on citations made start at 1975).

Generality, Originality, Complexity and PatShare are based on the US Nclass 
classification.

All regressions include a complete set of two-digit technology field dummies 
(36), grant year dummies (10) and a dummy for IntShare equals zero.
* denotes a significance level of 5 percent.



(6)(5)(4)(3)(2)(1)

-0.103*-0.119*-0.111*-0.109*-0.129*-0.123*Generality
(0.039)(0.043)(0.044)(0.030)(0.035)(0.036)

-0.048*-0.055*-0.050*Originality
(0.024)(0.025)(0.026)

0.036*0.036*0.036*0.033*0.034*0.034*Cites  
(0.002)(0.002)(0.002)(0.001)(0.002)(0.002)

0.020*0.021*0.020*BackCites
(0.003)(0.003)(0.003)

0.004*0.004*0.003*0.003*Complexity
(0.001)(0.001)(0.001)(0.001)

0.656*0.851*PatShare
(0.322)(0.332)

38,74538,74538,74592,03292,03292,032Observations

0.1190.1180.1170.1250.1240.123R²

Table 6
The effect of Generality and Originality the probability to internalize

Dependent variable: A dummy for a positive IntShare.  Probit estimation.

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation 
(clustered by firms).

Cites is the number of direct citations the originating patent receives (over the period 
1975-1999). BackCites is the number of citations made by the originating patent. 

Since Originality and BackCites are backwards looking, the sample of originating patents 
covers only the originating patents granted between 1975 and 1980 (since data on 
citations made start at 1975).

All regressions include a complete set of two-digit technology field dummies (36) and 
grant year dummies (10).

* denotes a significance level of 5 percent.



(5)(4)(3)(2)(1)

0.217*0.141*0.135*0.120*0.330*R&D stock/Assets
(0.040)(0.026)(0.026)(0.064)(0.101)

1.311* 
(0.586)

1.379* 
(0.498)

1.702* 
(0.533)

2.341* 
(0.507)

5.624* 
(2.295)

IntShare x (R&D 
stock/Assets)

0.025*0.020*0.016*IntShare
(0.007)(0.006)(0.004)

0.033*0.035*log(Sales)
(0.004)(0.004)

-0.011*-0.005*log(Industry Sales)
(0.006)(0.006)

0.538*Sales Growth
(0.018)

YesYesYesYesNoPre-sample meansa

9,0159,4549,4549,4549,454Observations

0.5040.4990.4960.4960.294R²

Industry Sales is the aggregated sales of firms in the same for-digit SIC as the 
inventing firm (see Belenzon (2006) for detail). Sales Growth is the growth in the 
sales of the inventing firm.

Table 7
The effect of IntShare on Tobin's Q

Dependent variable: log(Tobin's-Q). Nonlinear Least Squares.

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered at the firm level). * denotes a significant level of 5 percent.

All regressions include 78 two-digits industry dummies, 4 technology indicators, a 
complete set of year dummies, a dummy variable for R&D stock equals zero and a 
dummy variable for IntShare equals zero.
aThe set of pre-sample means includes: Market Share, Employees, Tobin's Q, Sales, 
Assets, R&D stock, Patents stock and Citations stock.

IntShare is the firm-level average of the patent-level IntShare.



MaximumMinimumStd DevMedianMean variable

100012.690.004.689IntShare

0.930.00.260.500.432Generality

2331.420.5712.2417.685Complexity

100.090.020.055PatShare

100.270.440.377Originalitya

428211.858.0010.980Cites

940.02.954.004.930BackCitesa

260.03.758.338.643Backward Laga

1504.077.007.67Forward Lag

Cites is the number of direct citations the originating patent receives (over the period 
1975-1999). BackCites is the number of citations made by the originating patent. 
Forward Lag is the average difference between the grant year of the patents that cite 
the originating patent and the grant year of the originating patent. Backward Lag is the 
average difference between the grant year of the originating patent and the grant year 
of the patents it cites.

Patents' main characteristics

aThe backward looking variables: Originality, Backward Tech, Backward Citations and 
Backward Lag, are computed only for the patents that were granted between 1975 
and 1980.

Table A1

Generality, Originality, Complexity and PatShare are based on the US Nclass 
classification. Generality is not bias-corrected.



Standard 
deviationMaxMinMedianMeanMnemonicVariable 

3.5224.6300.282.17IntShare1

2.34200.11.322V/ATobin's Q

16,782485,56605924,689VMarket value, $m

319547343049806KR&D stock, $m

11000.200.39K/AR&D stock / Assets

9,736199,3032.133923,090ACapital stock, $m

11,412180,55706863,925Sales, $m

4899,8480.42 18155Patents stock

58512,6430.2816158Patents stock weighted 
by citations

Table A2

Descriptive statistics: accounting and patents variables

9,454 observations and 476 firms

The statistics are computed over all the observations that were included in the estimation (1980-2001) and 
are given in thousands of 1996 USD.

1For about 40 percent of firms IntShare is zero. 

IntShare is the firm-level average of the patent-level IntShare.



MaxMinStd DevMedianMean variable

100.3190.5930.517Nclass

100.3240.5950.520IPC

100.3150.4490.399SubHJT

100.2290.8930.818SubIPC

100.3170.5000.433SIC

428211.8508.00010.967Citesa

SICSubIPCSubHJTIPCNclassvariable

1.000Nclass

1.0000.671IPC

1.0000.6120.802SubHJT

1.0000.3620.4870.451SubIPC

1.0000.6100.6720.6100.721SIC

0.0540.1130.0600.0590.072Cites

Table A3

Generality (bias-corrected)

The correlation between the alternative Generality 
measures

Cites is the number of direct citations the originating patent receives 
(over the period 1975-1999).

bRefers to the Generality measure which is based on Nclass fields 
definition, where the citing fields are weighted by their proximity to the 
cited field (using citations proximity metric).

Descriptive statistics for Generality (bias-corrected)

a5,052 patents in the initial sample receive only one citation, thus, the 
bias-corrected measures are not defined. These patents were dropped 
from the sample.



MaxMinStd DevMedianMean 

55810255.91489.7number of citations

21959.01037.06075.112066.011153.9Potentially cited patents

10300.0198.01764.71801.02242.2Potentially citing patents

199419637.619741974cited grant year

199519755.819871987citing grant year

19.13001.1700.07910.418citation frequency (10xe-5)

3217.611.512.3lag in years

15039.2453.12298.04108.44458.2regression weight

0.99600.3650.7500.629Weighted-generality

1.500.4240.9460.793Bias-corrected weighted-
generality

The entries in the table refers to the citations "cell", as described in the text. Citations 
frequency is the dependent variable in equation (the estimation equation of the 
propensity of citations). The cited "cells" are include the dimensions of the grant year and 
main technology class of the cited patents. The citing "cells" include the dimensions of 
the grant year and HJT sub-category technology class of the citing patents. The lag in 
years is the difference between the grant year of the citing patent and the grant year of 
the cited patent for every "cell". Potentially cited and citing patents for a given "cell" are 
defined as following: the number of patents in a given main technology class in a given 
year for potentially cited patents and the number of patents in a given HJT sub-category 
technology class in a given year for the potentially citing patents.

Table A4
Descriptive statistics for the propensity of citations estimation and 

weighted-generality



HJT Subcategory class name
HJT 

Subcategory 
class number

Main technology class

OthersMechanical
Electrical and 

Electronic
Drugs and 

Medical
Computers and 
Communications

Chemical

-0.718-0.904-0.961-0.566-0.9721.000Agriculture,Food,Textiles11Chemical

-0.656-0.740-0.690-0.799-0.8720.702Coating Chemical12Chemical

-0.745-0.799-0.719-0.857-0.9491.703Gas     Chemical13Chemical

-0.977-0.984-0.992-0.347-0.9940.304Organic Compounds14Chemical

-0.839-0.909-0.975-0.708-0.9771.333Resins  Chemical15Chemical

-0.803-0.781-0.746-0.776-0.8791.233Miscellaneous-chemical19Chemical

-0.790-0.853-0.847-0.675-0.9401.046Average

-0.936-0.861-0.126-0.94411.993-0.971Communications21Computers and Communications

-0.905-0.6340.193-0.95216.012-0.965Computer Hardware & Software22Computers and Communications

-0.879-0.713-0.050-0.97113.123-0.854Computer Peripherials23Computers and Communications

-0.952-0.858-0.329-0.99212.416-0.971Information Storage24Computers and Communications

-0.918-0.767-0.078-0.96513.386-0.940Average

-0.950-0.981-0.9933.141-0.996-0.368Drugs31Drugs and Medical

-0.793-0.868-0.59510.236-0.711-0.858Surgery & Med Inst.32Drugs and Medical

-0.919-0.977-0.9314.103-0.978-0.516Biotechnology33Drugs and Medical

-0.901-0.860-0.8976.904-0.933-0.848Miscellaneous39Drugs and Medical

-0.891-0.921-0.8546.096-0.905-0.647Average

-0.908-0.8923.158-0.966-0.139-0.946Electrical Devices41Electrical and Electronic

-0.930-0.8773.138-0.971-0.523-0.938Electrical Lighting42Electrical and Electronic

-0.902-0.8502.907-0.8330.107-0.911Measuring & Testing43Electrical and Electronic

-0.916-0.8143.299-0.914-0.126-0.905Nuclear & X-rays44Electrical and Electronic

-0.886-0.7153.698-0.970-0.331-0.904Power Systems45Electrical and Electronic

-0.954-0.9175.256-0.993-0.049-0.797Semiconductor Devices46Electrical and Electronic

-0.8390.0313.443-0.9240.971-0.926Miscellaneous49Electrical and Electronic

-0.905-0.7193.557-0.939-0.013-0.904Average

-0.7561.025-0.862-0.914-0.785-0.756Mat. Proc & Handling51Mechanical

-0.7930.751-0.541-0.945-0.854-0.840Metal Working52Mechanical

-0.8281.366-0.691-0.940-0.737-0.937Motors & Engines + Parts53Mechanical

-0.9161.262-0.413-0.945-0.094-0.862Optics  Mech54Mechanical

0.8820.001-0.829-0.988-0.782-0.961Transportation55Mechanical

-0.7660.968-0.831-0.911-0.611-0.890Miscellaneous59Mechanical

-0.5290.895-0.695-0.941-0.644-0.874Average

0.064-0.919-0.902-0.770-0.947-0.856Agriculture,Husbandry,Food61Others

0.723-0.859-0.895-0.946-0.643-0.971Amusement Devices62Others

0.778-0.846-0.904-0.803-0.922-0.910Apparel & Textile63Others

1.342-0.708-0.880-0.967-0.881-0.811Earth Working & Wells64Others

0.766-0.792-0.911-0.794-0.934-0.959Furniture,House Fixtures65Others

0.900-0.806-0.656-0.969-0.919-0.791Heating Others66Others

0.753-0.606-0.823-0.898-0.966-0.903Pipes & Joints67Others

1.108-0.731-0.906-0.858-0.938-0.865Receptacles68Others

0.577-0.699-0.760-0.898-0.718-0.693Miscellaneous69Others

0.779-0.774-0.848-0.878-0.874-0.862Average

Table A5
The propensity of citations between technology "cells"

The entries in the table are the estimated propensity of citations between "cells" of patent citations, as explained in the text. The rows represent the citing patents and the columns represent 
the cited patent. All entries are relative to the propensity of citations from "Agriculture,Food,Textiles" to "Chemicals" (which is normalized to unity). For example, the propensity of citations 
from a randomly drawn patent from "Semiconductor Devices" to a randomly drawn patent from "Electrical and Electronic" is 5.256 times the propensity of citations of the benchmark "cell" .

Main technology class name 



Inventing 
firmCitesGeneralityIntShareGrant yearUS NclassPatent

156180.91501969523420032

229180.90901971163551940

2449220.931019732693711081

1466570.927019745233787351

511150.918019765243931090

2221330.08951.319714263619207

1753450.05156.919743243849721

2452300.07980.719754243906090

2452250.09976.119754243929987

22290.07454.119791234159011

These patents exemplify the negative correlation between Generality and IntShare. I focus 
on patents that are highly cited since these patents are likely to generate a substantial 
diffusion "tree". 

Table A6
Examples of patents with high Generality and low IntShare, and patents 

with low Generality and high IntShare

High Generality and low IntShare

Low Generality and high IntShare
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