Early-life correlates of later-life well-being: Evidence from the Wisconsin Longitudinal Study
by Andrew Clark and Tom Lee

Discussant: Stephen P. Jenkins
(LSE, ISER, and IZA)
The WLS is a great data set!

- Cohort study of Wisconsin high school seniors in 1957
- Remarkably long panel: 54 years between measurements used here
- Very rich measures of outcomes and of predictors

<table>
<thead>
<tr>
<th>Year</th>
<th>Respondent age</th>
<th>Outcome measures</th>
<th>Predictors</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>18</td>
<td></td>
<td>“distal”</td>
<td>10,317</td>
</tr>
<tr>
<td>1964</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>54</td>
<td>WB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>65</td>
<td>WB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>72</td>
<td>WB</td>
<td>“proximal”</td>
<td>2,189</td>
</tr>
</tbody>
</table>

- NB data also collected about siblings – not used here
The method and headline findings

Method

1. For each WB outcome observed at age 72, regress outcome on …
 - Distal predictor set: see Table 4
 - Distal & Proximal predictor set: see Table 5

2. For each proximal predictor observed at age 72, regress on
 - Distal predictor set: see Table 7 ("channels" analysis)

3. Also some analysis of outcomes at different ages (Figures)

Findings

- Family background casts long shadow on WB outcomes
- But some differences in patterns across WB outcomes
- “Well-being policy will thus depend to an extent on which well-being measure is preferred”
Remarks about analysis

• Attrition and missing data (item non-response) are potential problems?
 ▪ Using 2189 every-question respondents apparently not a problem!
 ▪ Weights used for attrition; multiple imputation for missingness due to item non-response
 – Few details of construction provided; both based on MAR (cf. MNAR)
 – Why only 3111 out of 10,317 with multiply-imputed data?

• Why pool men and women?
 ▪ Gender differences modelled as intercept shifts only; but could have different slope coefficients and error variances
 ▪ This was a time when the world was (even) more gendered than today; different roles of distal factors and ‘environment’

• Presentation of results: blizzard of regression estimates (and to too many decimal places)
 ▪ Figures “work” better than the tables?
Remarks about analysis

- What other distal variables were available but not used?
 - Little discussion of predictor variable selections

- Variables used
 - “IQ score” label: Henmon-Nelson score is a “test of mental ability important for success in academic work and in similar endeavours outside the classroom”
 - Single Parenthood: binary indicator and yet standardised?
 - Household income measures at older ages: do they include components increasingly important e.g. taking account of all income support programs, and MOOPEs
 - Log(parental income) versus more general non-linear specification if want to examine “poverty” effects

- WB outcomes not used: household income, longevity
 - Scope to compare “WB” outcomes and other outcome types
Cautions regarding policy implications

• There are no specific policy implications in this paper
 ▪ “Improve family background”? Can change family income and parental education, but “IQ score” or “# siblings”?

• Note the very large unexplained variation in outcomes around the predicted means
 ▪ R-squared extremely low, even when proximal predictors in
 ▪ Cf. Jencks (Inequality, 1972) and his emphasis on “luck”

• Representativeness and external validity
 ▪ Cohort born 1938/39 – today’s high school seniors grow up in a totally different world
 ▪ Wisconsin in 1957 was and is not the USA (or elsewhere)

“The WLS sample is broadly representative of white, non-Hispanic American men and women who have completed at least a high school education. Among Americans aged 50 to 54 in 1990 and 1991, approximately 66 percent were non-Hispanic white persons who completed at least 12 years of schooling. Some strata of American society are not well represented. The WLS sample is mainly of German, English, Irish, Scandinavian, Polish, or Czech ancestry. It is estimated that about 75 percent of Wisconsin youth graduated from high school in the late 1950s – everyone in the primary WLS sample graduated from high school; about seven percent of their siblings did not graduate from high school. Minorities are not well-represented: there are only a handful of African American, Hispanic, or Asian persons in the sample.” [Link to source]